Abstract:
Transitioning a UE from a first RAT to a third RAT in an area having a first RAT, a second RAT, and a third RAT. The first RAT may be a second generation RAT, the second RAT may be a third generation RAT, and the third RAT may be a fourth generation RAT. The network of the first RAT may not provide information (e.g., a neighbor list) for the third RAT. The UE may use information to perform measurement of one or more base stations of the third RAT without attaching to the second RAT. For example, the UE may use pre-stored information to perform measurement of the third RAT. Alternatively, or additionally, the UE may receive the information (e.g., from a system information block) from the second RAT without attaching to the second RAT. The UE may then transition to from the first RAT to the third RAT.
Abstract:
A network reselection procedure, of a wireless communication device, that occurs following a network detachment event, such as a device sleep event or a device power savings mode event. The wireless communication device attempts to acquire a first wireless network to which the wireless communication device was most recently attached, immediately preceding the network detachment event. Then, in response to an unsuccessful acquisition of the first wireless network, the wireless communication device attempts an alternate network acquisition utilizing a Most Recently Used List (MRUL) that is stored at the wireless communication device and includes information about one or more frequency bands allocated to a primary service provider with which the wireless communication device is affiliated. After determining whether the alternate network acquisition attempt was successful, the wireless communication device attaches to a second network and stores information associated with the second network.
Abstract:
Performing selective tune-away by a user equipment (UE). The UE may include a first radio that is configurable to operate according to a first radio access technology (RAT) and a second RAT. The UE may use the radio to communicate using the first RAT and the second RAT using the first radio. The UE may also perform measurement of a received signal strength for the first RAT. The UE may determine if the received signal strength is less than a threshold. Neighbor cell measurement and/or synchronization may be performed if the received signal strength is less than the threshold. However, if the received signal strength is greater than the threshold, the neighbor cell measurement and/or synchronization may not be performed. The UE may continue to perform page decoding for the first RAT using the first radio, e.g., for each discontinuous reception (DRX) cycle of the first RAT.
Abstract:
Performing selective tune-away by a user equipment (UE). The UE may include a first radio that is configurable to operate according to a first radio access technology (RAT) and a second RAT. The UE may use the radio to communicate using the first RAT and the second RAT using the first radio. The UE may also perform measurement of a received signal strength for the first RAT. The UE may determine if the received signal strength is less than a threshold. Neighbor cell measurement and/or synchronization may be performed if the received signal strength is less than the threshold. However, if the received signal strength is greater than the threshold, the neighbor cell measurement and/or synchronization may not be performed. The UE may continue to perform page decoding for the first RAT using the first radio, e.g., for each discontinuous reception (DRX) cycle of the first RAT.
Abstract:
Apparatuses, systems, and methods for providing maximum transmit power control when utilizing multiple radio access technologies. For example, a wireless communication device comprising two cellular radios may intend to transmit on the first radio, while concurrently transmitting on the second radio. To ensure compliance with a maximum transmit power limitation, the device may determine an allowed transmit power level of the first radio, representing a difference between the maximum transmit power limitation and the current transmit power level being transmitted by the second radio. The device may also determine a threshold power level for a communication by the first radio. If the allowed transmit power level meets the threshold power level, then the device may transmit the first communication having a power level between the threshold power level and the allowed transmit power level. Otherwise, the device may forego transmission of the first communication.
Abstract:
Apparatuses, systems, and methods for a wireless device to perform methods to implement mechanisms for performing a listen again after talk procedure to detect collisions over an access medium. The wireless device may determine a frequency and configuration of modified transmission frames for transmission over an access medium (licensed or unlicensed) and may further determine a timing of the modified transmission frames within a transmission occasion. The wireless device may detect, during a listening period of the modified transmission frame, a collision and may adjust, based, at least in part, on the detected collision, a remaining transmission schedule for the transmission schedule and/or LBT parameters.
Abstract:
Groupcast communications between devices of a group of devices, e.g. between vehicles in a platoon, may include a device in the group transmitting a groupcast message in a sidelink transmission to the other devices and receiving feedback information in sidelink transmissions from the other devices within the same channel occupancy time (CoT). The feedback information may be transmitted by the other devices in response to the groupcast message including an information request directed to the other devices. The group of devices may include a designated group leader which may manage one or more aspects of the communications of the other devices in the group. The designated group leader may be dynamically switched based at least on the received feedback information. The devices in the group may use beamforming for intra-group and inter-group sidelink communications for efficient spectrum usage.
Abstract:
Apparatuses, systems, and methods for performing uplink and downlink communication in cell edge scenarios with improved reliability. A wireless device may establish a radio resource control connection with a first cell. The wireless device may determine that a second cell strongly interferes with communication with the first cell. The wireless device may provide an indication that the second cell is a strongly interfering cell to the first cell. The first cell may coordinate with the second cell to transmit data to the wireless device, and to receive data from the wireless device, based at least in part on the indication that the second cell is a strongly interfering cell.
Abstract:
Apparatuses, systems, and methods for a wireless device to perform methods for determining resources for scheduling side-link communications. The resources may be semi-persistent and/or dynamic resources. A user equipment device (UE) may determine a resource map for use in scheduling semi-persistent resources for side-link communications with at least one wireless node. The UE may transmit a resource map request message indicating preferred resource blocks, where each resource block may be defined by a time and a frequency. The UE may receive a confirmation message that may include a report regarding a set of resource blocks. The set of resource blocks may be from the preferred resource blocks included in the resource map request message. The UE may determine, based, at least in part, on the confirmation message, resource blocks to be used for the side-link communications and initiate the side-link communications using the determined resource blocks.
Abstract:
Apparatuses, systems, and methods for a wireless device to perform methods to implement mechanisms for performing autonomous and non-autonomous side-link resource management as well as groupcast side-link resource management. A wireless device may perform a method for autonomous (e.g., non-network assisted) side-link resource management, e.g., the wireless device may perform a method to originate a semi-persistent side-link schedule for a side-link resource (e.g., a time domain and/or a frequency domain resource for side-link communications). Additionally, a wireless device may perform a method for groupcast side-link resource management. A network node may perform a method for non-autonomous (e.g., network assisted) side-link resource management, e.g., the network node may perform a method to assist wireless devices to schedule side-link resources.