Abstract:
Mobile devices, base stations, and/or relay stations may implement a method for an improved and reliable automatic repeat request feedback indication. A mobile device (UE) may establish communication within a wireless network, and indicate to the network that the UE is a special type device, e.g. a constrained device. The network (base station) may then not send an indication on a physical indicator channel to the UE when certain conditions are met, and instead, the mobile device may interpret control information received from the network on a physical control channel as a negative acknowledgment indication corresponding to an automatic repeat request from the network. The UE may then perform a retransmission according to the interpreted control information. A new control information format may be used to further define how the network and UE implement the automatic repeat request process, to reduce the total number of bits required in the control information.
Abstract:
This disclosure relates to techniques for opportunistically depowering receiver chains of a wireless device. Based on received control information, a device may determine a depowering time. For example, the device may determine a minimum number of symbols of the payload channel that will provide an effective spectral efficiency less than a supportable spectral efficiency of the payload channel. The depowering time may be determined as a time upon receipt of the determined minimum number of symbols. The device may determine whether to perform a depowering procedure, based upon the determined depowering time. In response to determining to perform the depowering procedure, the device may depower an RF receiver of the device at the depowering time, wherein the depowering time is prior to the end of the payload channel. The device may decode the payload channel based on a portion of the payload channel received by the RF receiver.
Abstract:
In order to reduce power consumption of an electronic device during wireless communication, the electronic device may transition between a baseline (simple) receiver and a higher-power advanced receiver based on network conditions and/or environmental conditions. For example, the transition to the advanced receiver may occur when it offers improved communication performance over the baseline receiver, such as when there is significant interference and a high data rate, or when there is significant interference and a signal-to-noise ratio (SNR) is low. Similarly, the transition to the baseline receiver may occur when the capabilities of the advanced receiver are not needed, such as when there is less interference, or when the data rate is lower and the SNR is high. In this way, the electronic device can avoid the added power consumption associated with the advanced receiver except where the communication performance offered by the advanced receiver is needed.
Abstract:
Methods and apparatus for synchronizing operational state during hybrid network operation. In one embodiment, the various access technologies that makeup the hybrid network not fully synchronized. Thus, a wireless device operating in a mixed mode must be capable of managing synchronization across multiple access technologies. The wireless device is configured to estimate an expected “tune-away” period when disengaging with a one access technology to address events (for example, link maintenance, calls, data, and the like) or perform monitoring on a second access technology. The estimate is then used by the device to adjust its operational parameters on the technology from which it is tuning away. This ensures smooth switching away from and back to the various network technologies.
Abstract:
Manipulating modulation and coding scheme (MCS) allocation after a communication interruption. A UE device may resume communications with a BS after a communication interruption. Channel quality information may be generated and transmitted to the BS. The channel quality information may be based on channel quality measurements, and may also be based on an offset configured manipulate an MCS allocation by the BS based on determining that the interruption to communication between the UE and the BS has occurred.
Abstract:
Apparatus and methods for implementing “intelligent” receive diversity management in e.g., a mobile device. In one implementation, the mobile device includes an LTE-enabled UE, and the intelligent diversity management includes selectively disabling receive diversity (RxD) in that device upon meeting a plurality of criteria including (i) a capacity criterion, and (ii) a connectivity criterion. In one variant, the capacity criterion includes ensuring that an achievable data rate associated with a single Rx (receive) chain is comparable to that with RxD.
Abstract:
Mobile devices, base stations, and/or relay stations may implement a method for an improved and reliable automatic repeat request feedback indication. A mobile device (UE) may establish communication within a wireless network, and indicate to the network that the UE is a special type device, e.g. a constrained device. The network (base station) may then not send an indication on a physical indicator channel to the UE when certain conditions are met, and instead, the mobile device may interpret control information received from the network on a physical control channel as a negative acknowledgment indication corresponding to an automatic repeat request from the network. The UE may then perform a retransmission according to the interpreted control information. A new control information format may be used to further define how the network and UE implement the automatic repeat request process, to reduce the total number of bits required in the control information.
Abstract:
A method performed at a base station and a corresponding method performed at a station receiving a transmission from the base station. The methods relate to signaling the station as to a number of PDCCH information that is included in the transmission so the station may terminate a search when the station has identified the PDCCHs in the transmission. The method performed by the station includes receiving the transmission that includes at least one PDCCH information, each PDCCH information having a respective mapped downlink control information (DCI). The method further includes detecting one of the PDCCH information in the transmission and determining lengths of information bits of the DCI and the PDCCH information. The method also includes terminating a search for a further one of the PDCCH information when a first type of padding is used for the mapping of the DCI over the PDCCH information based on the lengths.
Abstract:
Managing radio resources across dual networks includes a wireless mobile device connecting to a first wireless network using a first radio access technology. The wireless device may notify the first network of a capability to be temporarily non-responsive to the first network while maintaining a signaling connection to the first network. The wireless device may communicate with a second network. The wireless device may return to communicating with the first network subsequent to communicating with the second network, and in response to communicating with the second network for less than a predetermined amount of time, the wireless device may send a scheduling request to the first network. In response to receiving a grant acknowledgement from the first network, the wireless device may send a buffer status report that includes a value such as zero to indicate that the wireless device has returned to and can communicate with the first network.
Abstract:
Managing radio resources across dual networks includes a wireless mobile device connecting to a first wireless network using a first radio access technology. The wireless device may notify the first network of a capability to be temporarily non-responsive to the first network while maintaining a signaling connection to the first network. The wireless device may communicate with a second network. The wireless device may return to communicating with the first network subsequent to communicating with the second network, and in response to communicating with the second network for less than a predetermined amount of time, the wireless device may send a scheduling request to the first network. In response to receiving a grant acknowledgement from the first network, the wireless device may send a buffer status report that includes a value such as zero to indicate that the wireless device has returned to and can communicate with the first network.