Abstract:
Oxidizable contaminants in water are destroyed quickly and efficiently by exposing a contaminated water flow to oxidizing conditions under pressure. Specifically, ozone generated from oxygen and hydrogen peroxide are injected into the water flow in at least one, and preferably more than one, high intensity mixing/reaction stage. The ozone and hydrogen peroxide are injected at velocities and directions approximately matching those of the contaminated water flow. High intensity mixing under pressure facilitates rapid and complete oxidation of the contaminants with minimal stripping of volatile contaminants and waste of undissolved ozone. Residual ozone levels after high intensity mixing are carefully monitored and minimized by adjusting the injection of hydrogen peroxide and ozone in order to suppress the formation of bromate.
Abstract:
Oxidizable contaminants in water are destroyed quickly and efficiently by exposing a contaminated water flow to oxidizing conditions under pressure. Specifically, ozone generated from oxygen and hydrogen peroxide are injected into the water flow in at least one, and preferably more than one, high intensity mixing/reaction stage. The ozone and hydrogen peroxide are injected at velocities and directions approximately matching those of the contaminated water flow. High intensity mixing under pressure facilitates rapid and complete oxidation of the contaminants with minimal stripping of volatile contaminants and waste of undissolved ozone. Residual ozone levels after high intensity mixing are carefully monitored and minimized by adjusting the injection of hydrogen peroxide and ozone in order to suppress the formation of bromate.
Abstract:
Oxidizable contaminants in water are destroyed rapidly and efficiently by exposing the water to oxidizing conditions under pressure. Specifically, a single dose of hydrogen peroxide may be injected into the water, followed by the repeated injection and mixing of low doses of ozone. In each such high intensity mixing/reaction stage, ozone is injected at a pressure, velocity, and direction approximately matching that of the contaminated water flow. High intensity mixing under pressure facilitates rapid and complete oxidation of the contaminants with minimal stripping of volatile contaminants and waste of undissolved ozone. Residual ozone levels after high intensity mixing may be carefully monitored and minimized by adjusting the injection of hydrogen peroxide and ozone in order to suppress the formation of bromate. Additional contaminants may be removed by passing the treated water through activated carbon beds.
Abstract:
Oxidizable contaminants in water are destroyed rapidly and efficiently by exposing the water to oxidizing conditions under pressure. Specifically, a single dose of hydrogen peroxide may be injected into the water, followed by the repeated injection and mixing of low doses of ozone. In each such high intensity mixing/reaction stage, ozone is injected at a pressure, velocity, and direction approximately matching that of the contaminated water flow. High intensity mixing under pressure facilitates rapid and complete oxidation of the contaminants with minimal stripping of volatile contaminants and waste of undissolved ozone. Residual ozone levels after high intensity mixing may be carefully monitored and minimized by adjusting the injection of hydrogen peroxide and ozone in order to suppress the formation of bromate. Additional contaminants may be removed by passing the treated water through activated carbon beds.
Abstract:
Apparatus and methods for water treatment are described, particularly for the simultaneous removal of nitrate, perchlorate, and other organic contaminates from contaminated water using a membrane biofilm reactor (MBfR).