Abstract:
A radiation collector comprising a first collector segment comprising a plurality of grazing incidence reflector shells configured to direct radiation to converge in a first location at a distance from the radiation collector, a second collector segment comprising a plurality of grazing incidence reflector shells configured to direct radiation to converge in a second location at said distance from the radiation collector, wherein the first location and the second location are separated from one another.
Abstract:
A substrate stage is used in a lithographic apparatus. The substrate stage includes a substrate table constructed to hold a substrate and a positioning device for in use positioning the substrate table relative to a projection system of the lithographic apparatus. The positioning device includes a first positioning member mounted to the substrate table and a second positioning member co-operating with the first positioning member to position the substrate table. The second positioning member is mounted to a support structure. The substrate stage further comprises an actuator that is arranged to exert a vertical force on a bottom surface of the substrate table at a substantially fixed horizontal position relative to the support structure.
Abstract:
A lithographic apparatus has a support that is provided with burls for holding an object. The support has been fabricated with a lithographic manufacturing method, e.g., a MEMS-technology, so as to create burls whose orientations or positions are individually electrically controllable.
Abstract:
A sensor includes two shear-mode piezoelectric transducers, wherein each piezoelectric transducer has a bottom surface and a top surface, wherein the top surfaces of the piezoelectric transducers are rigidly connected to each other, and wherein the bottom surfaces of the piezoelectric transducers are configured to be attached to an object to be measured.
Abstract:
A lithographic apparatus comprises a system. The system comprises a first part, a second part and an energy absorbing element. The second part is configured to move relatively to the first part. The system has a gap located between the first part and the second part during an operation mode of the system. The energy absorbing element is for absorbing energy between the first part and the second part when the first part and the second part crash onto each other in a failure mode of the system. The energy absorbing element is outside the gap.
Abstract:
A lithographic apparatus including a first body including a heat source, a second body and a heater device is presented. The second body has a facing surface facing the first body via a gap between the first and second bodies. The heat source is for providing a heat flux to the second body via the gap. The heater device is attached to the facing surface. The heater device is configured to provide a further heat flux to the second body.
Abstract:
A displacement measurement system comprising at least one retro reflector and a diffraction grating. Said displacement measurement system is constructed and arranged to measure a displacement by providing a first beam of radiation to the measurement system, wherein the diffraction grating is arranged to diffract the first beam of radiation a first time to form diffracted beams. The at least one retro reflector is arranged to subsequently redirect the diffracted beams to diffract a second time on the diffraction grating. The at least one retro reflector is arranged to redirect the diffraction beams to diffract at least a third time on the diffraction grating before the diffracted beams are being recombined to form a second beam. And the displacement system is provided with a sensor configured to receive the second beam and determine the displacement from an intensity of the second beam.
Abstract:
A substrate stage is used in a lithographic apparatus. The substrate stage includes a substrate table constructed to hold a substrate and a positioning device for in use positioning the substrate table relative to a projection system of the lithographic apparatus. The positioning device includes a first positioning member mounted to the substrate table and a second positioning member co-operating with the first positioning member to position the substrate table. The second positioning member is mounted to a support structure. The substrate stage further comprises an actuator that is arranged to exert a vertical force on a bottom surface of the substrate table at a substantially fixed horizontal position relative to the support structure.
Abstract:
A lithographic apparatus including a first body including a heat source, a second body and a heater device is presented. The second body has a facing surface facing the first body via a gap between the first and second bodies. The heat source is for providing a heat flux to the second body via the gap. The heater device is attached to the facing surface. The heater device is configured to provide a further heat flux to the second body.
Abstract:
A substrate stage is used in a lithographic apparatus. The substrate stage includes a substrate table constructed to hold a substrate and a positioning device for in use positioning the substrate table relative to a projection system of the lithographic apparatus. The positioning device includes a first positioning member mounted to the substrate table and a second positioning member co-operating with the first positioning member to position the substrate table. The second positioning member is mounted to a support structure. The substrate stage further comprises an actuator that is arranged to exert a vertical force on a bottom surface of the substrate table at a substantially fixed horizontal position relative to the support structure.