Abstract:
The present disclosure can provide aerogel compositions which have a thermal storage capacity, and which are durable and easy to handle. The present disclosure can provide aerogel compositions which include PCM coatings, particle mixtures, or PCM materials confined within the porous network of an aerogel composition. The present disclosure can provide methods for producing aerogel compositions by coating an aerogel composition with PCM materials, by forming particle mixtures with PCM materials, or by confining PCM materials within the porous network of an aerogel composition.
Abstract:
Nanoporous carbon-based scaffolds or structures, and specifically carbon aerogels and their manufacture and use thereof are provided. Embodiments include a silicon-doped anode material for a lithium-ion battery, where the anode material includes beads of a polyimide-derived carbon aerogel. The carbon aerogel may further include silicon particles and accommodates expansion of the silicon particles during lithiation. The anode material provides optimal properties for use within the lithium-ion battery.
Abstract:
The present disclosure is directed to silica-carbon composite materials including a low bulk density carbon material having a skeletal framework of carbon nanofibers, the skeletal framework forming a pore structure comprising an array of interconnected pores. The silica-carbon composite materials further include a conformal coating layer of silica on the carbon nanofibers. Further provided are methods for preparation of the silica-carbon composite materials, and methods for reduction of the silica-carbon composite materials to provide silicon-carbon composite materials.
Abstract:
The present disclosure is directed to methods of forming polyamic acid and polyimide gels in water. The resulting polyamic acid and polyimide gels may be converted to aerogels, which may further be converted to carbon aerogels. Such carbon aerogels have the same physical properties as carbon aerogels prepared from polyimide aerogels obtained according to conventional methods, i.e., organic solvent-based. The disclosed methods are advantageous in reducing or avoiding costs associated with use and disposal of potentially toxic solvents and byproducts. Gel materials prepared according to the disclosed methods are suitable for use in environments involving electrochemical reactions, for example as an electrode material within a lithium-ion battery.
Abstract:
The present disclosure can provide aerogel compositions which have a thermal storage capacity, and which are durable and easy to handle. The present disclosure can provide aerogel compositions which include PCM coatings, particle mixtures, or PCM materials confined within the porous network of an aerogel composition. The present disclosure can provide methods for producing aerogel compositions by coating an aerogel composition with PCM materials, by forming particle mixtures with PCM materials, or by confining PCM materials within the porous network of an aerogel composition.
Abstract:
Materials and methods for manufacturing electronic devices and semiconductor components using low dielectric materials comprising polyimide based aerogels are described. Additional methods for manipulating the properties of the dielectric materials and affecting the overall dielectric property of the system are also provided.
Abstract:
The present disclosure is directed to methods of forming polyamic acid, polyamic acid metal salt, and polyimide gels under aqueous conditions, the methods utilizing water-soluble carbonate or bicarbonate salts. These gels may be converted to aerogels or xerogels, which may further be converted to carbon aerogels or xerogels. Such carbon aerogels or xerogels have the same physical properties as carbon aerogels or xerogels prepared from polyimide aerogels obtained according to conventional methods, i.e., organic solvent-based methods.
Abstract:
Nanoporous carbon-based scaffolds or structures, and specifically carbon aerogels and their manufacture and use thereof are provided. Embodiments include a silicon-doped anode material for a lithium-ion battery, where the anode material includes beads of a polyimide-derived carbon aerogel. The carbon aerogel may further include silicon particles and accommodates expansion of the silicon particles during lithiation. The anode material provides optimal properties for use within the lithium-ion battery.
Abstract:
The present disclosure can provide aerogel compositions which have a thermal storage capacity, and which are durable and easy to handle. The present disclosure can provide aerogel compositions which include PCM coatings, particle mixtures, or PCM materials confined within the porous network of an aerogel composition. The present disclosure can provide methods for producing aerogel compositions by coating an aerogel composition with PCM materials, by forming particle mixtures with PCM materials, or by confining PCM materials within the porous network of an aerogel composition.
Abstract:
Nanoporous carbon-based scaffolds or structures, and specifically carbon aerogels and their manufacture and use thereof are provided. Embodiments include a silicon-doped anode material for a lithium-ion battery, where the anode material includes beads of polyimide-derived carbon aerogel. The carbon aerogel includes silicon particles and accommodates expansion of the silicon particles during lithiation. The anode material provides optimal properties for use within the lithium-ion battery.