Abstract:
An optical membrane device (110) and method for making such a device (110) are described. This membrane is notable in that it comprises an optically curved surface (250). In some embodiments, this curved optical surface (250) is optically concave and coated, for example, with a highly reflecting (HR) coating to create a curved mirror. In other embodiments, the optical surface is optically convex and coated with, preferably, an antireflective (AR) coating to function as a refractive or diffractive lens.
Abstract:
An improved system and method for automated fiber polishing overcomes the limitations of conventional systems and methods. In particular, the present invention provides for continuous determination of the quality of the polish during a polishing procedure. An optical signal is transmitted to a fiber (28) tip, and any back-reflected signal is detected and monitored to determine polish quality. In this manner, automated polishing quality assurance is provided in real time.
Abstract:
A semiconductor tunable laser system includes a tunable Fabry-Perot cavity and a cavity length modulator, which controls an optical length of the cavity at least over a distance corresponding to the spacings between the longitudinal modes of the laser cavity. Thus, the tunable Fabry-Perot cavity allows the laser cavity to have gain at the desired wavelength of operation while the cavity length modulator tunes the cavity length such that a longitudinal cavity mode exists at the desired wavelength of operation. Also, in one embodiment, a wavelength locker system is further provided that has a differential wavelength filter, e.g., stepped etalon, and a multi-element detector, e.g., a quad-detector. The controller then modulates the Fabry-Perot cavity to control the wavelength in response to the signal received from the multi-element detector.
Abstract:
An alignment structure (100) maintains an optical fiber in a bore(113). The structure is fixed on a bench and is passively or actively aligned with a light source. Then the structure may be welded or soldered to the optical bench whereby the alignment may suffer due to heat transfer. To correct this, the alignment structure can be plastically deformed to correct the alignment after thecomponents have been fixed. The alignment structure has a substantially constant cross section in a z-axis direction as well as flexible links in order to allow displacements orthogonal to the optical axis. This mouvements will be initiated by seizing the component with a micro-positioner at a handle (136) and displacing it over the elastic limit to achieve permanent deformation.
Abstract:
Optical coherence tomography (OCT) probe and system designs are disclosed that minimize the effects of mechanical movement and strain to the probe to the OCT analysis. It also concerns optical designs that are robust against noise from the OCT laser source. Also integrated OCT system-probes are included that yield compact and robust electro-opto-mechanical systems along with polarization sensitive OCT systems.
Abstract:
An alignment structure (100) maintains an optical fiber in a bore (113). The structure is fixed on a bench and is passively or actively aligned with a light source. Then the structure may be welded or soldered to the optical bench whereby the alignment may suffer due to heat transfer. To correct this, the alignment structure can be plastically deformed to correct the alignment after the components have been fixed. The alignment structure has a substantially constant cross section in a z-axis direction as well as flexible links in order to allow displacements orthogonal to the optical axis. This movements will be initiated by seizing the component with a micro-positioner at a handle (136) and displacing it over the elastic limit to achieve permanent deformation.
Abstract:
An optical detector system comprises a hermetic optoelectronic package, an optical bench installed within the optoelectronic package, a balanced detector system installed on the optical bench. The balanced detector system includes at least two optical detectors that receive interference signals. An electronic amplifier system installed within the optoelectronic package amplifies an output of at least two optical detectors. Also disclosed is an integrated optical coherence tomography system. Embodiments are provided in which the amplifiers, typically transimpedance amplifiers, are closely integrated with the optical detectors that detect the interference signals from the interferometer. Further embodiments are provided in which the interferometer but also preferably its detectors are integrated together on a common optical bench. Systems that have little or no optical fiber can thus be implemented.
Abstract:
An integrated swept wavelength optical source uses a narrowband filtered broadband signal, such as a filtered amplified spontaneous emission (ASE) signal, with an optical amplifier and tracking filter and/or self-tracking filter. This source comprises a micro optical bench, a source for generating broadband light, a first tunable Fabry Perot filter, installed on the bench, for spectrally filtering the broadband light from the broadband source to generate a narrowband tunable signal, an amplifier, installed on the bench, for amplifying the tunable signal, and possibly a second tunable Fabry Perot filter, installed on the bench, for spectrally filtering the amplified tunable signal from the amplifier. In a self-tracking arrangement, a single tunable filter both generates the narrowband signal and spectrally filters the amplified signal. In some examples, two-stage amplification is provided. The use of a single bench implementation yields a low cost high performance system.