Abstract:
An optical temperature sensor for use in a temperature detector system having at least two birefringent crystal elements arranged in tandem. A collimated broad band light source is transmitted via a fiber optic cable, a polarizer to a first birefringent crystal element. The first crystal element decomposes the light wave into first and second orthogonally polarized waves and transmits the wave components to a second birefringent crystal element. The linearly polarized waves propagate through the birefringent crystals, and the environmental temperature introduces a temperature dependent phase shift between the two polarized waves. The light waves exit the second crystal to a second polarizer producing a modulated light spectrum. A focusing element collects the light and transmits it down another fiber optic cable. The cable transmits the light to an opto-electronic interface where the fringe pattern is extracted and a computer compatible signal is generated for a CPU. The CPU performs a Fourier transform on the fringe pattern, where the phase term for a selected frequency is the measure of the environmental temperature experienced by the birefringent crystals.
Abstract:
An optical illumination system comprising a waveguide (16) that accepts light generated by a light source and transmits the light via total internal reflection. Attached on one face of the waveguide is an array of microprisms (28), with each microprism having a light input surface, a light output surface and at least one sidewall (33a) which is tilted at an angle ς from the direction normal to the surface of the waveguide (16) and further comprising at least two planar faces (31, 31a) such that light escapes from the waveguide (16), reflects off the tilted sidewalls (33a) and emerges from the microprism as a spatially directed light source. An array of microlenses may be positioned to accept the output of the microprisms (28) so that the light exiting from the microlenses is a substantially collimated light source. The optical illumination system is advantageous for any application that requires a non diffuse or substantially collimated light source that is both energy efficient and contained in a low profile assembly.
Abstract:
A sensor for use in an optic system to detect current conditions in an environment. The sensor has a crystal member with a first waveguide extending from a top surface and a second waveguide extending from a bottom surface of a core member. Polarized light waves from a source are simultaneously communicated to the first and second waveguides. A first pressure is communicated to the top surface of the crystal member and an unknown pressure corresponding to the pressure of the environment is communicated to the bottom surface of the crystal member. The first pressure and the unknown pressure develop a pressure differential which act on the crystal member to deform the first and second waveguides. The deformation of the first and second waveguides modify the polarized light waves to create first and second output waves which are communicated to an optical interface where differences therebetween are extracted. The differences are analyzed by a computer to identify the current pressure and temperature of the environment.
Abstract:
Guides d'ondes optiques utilisables dans des environnements à haute température, formés d'un corps guide d'ondes composé d'un premier grenat d'aluminium cristallin, qui est recouvert d'une couche épitaxiale d'un second grenat d'aluminium cristallin, lequel a un indice de réfraction plus bas que le premier grenat d'aluminium cristallin. Lorsque le manque de correspondance de réseaux cristallins entre le grenat servant de substrat et la couche de revêtement est suffisamment important, un effort est induit qui cause une compression résultant en une biréfringence dans la couche guide d'ondes. De tels guides d'ondes biréfringents maintiennent la polarisation de la lumière qui se propage à travers eux.
Abstract:
An optical illumination system comprising a waveguide (16) that accepts light generated by a diffuse light source (14) and transmits the light via total internal reflection. Attached on one face of the waveguide is an array of microprisms (90), with each microprism (90) having a light input surface (92) parallel to a light output surface (94) and at least two sidewalls (96, 98) tilted at an angle from the direction normal to the surface of the waveguide (16) such that light escapes from the waveguide, reflects off the tilted sidewalls (96, 98) and emerges from the microprism (90) as a spatially directed light source. An array of microlenses (80) may be positioned to accept the output of the microprisms (90) so that the light exiting from the microlenses (80) is a substantially collimated light source. The optical illumination system is advantageous for any application that requires a non diffuse or substantially collimated that is both energy efficient and contained in a low profile assembly.
Abstract:
An optical illumination system comprising a waveguide (16) that accepts light generated by a diffuse light source (14) and transmits the light via total internal reflection. Attached on one face of the waveguide is an array of microprisms (90), with each microprism (90) having a light input surface (92) parallel to a light output surface (94) and at least two sidewalls (96, 98) tilted at an angle from the direction normal to the surface of the waveguide (16) such that light escapes from the waveguide, reflects off the tilted sidewalls (96, 98) and emerges from the microprism (90) as a spatially directed light source. An array of microlenses (80) may be positioned to accept the output of the microprisms (90) so that the light exiting from the microlenses (80) is a substantially collimated light source. The optical illumination system is advantageous for any application that requires a non diffuse or substantially collimated that is both energy efficient and contained in a low profile assembly.
Abstract:
A sensor for use in an optic system to detect current conditions in an environment. The sensor has a crystal member with a first waveguide extending from a top surface and a second waveguide extending from a bottom surface of a core member. Polarized light waves from a source are simultaneously communicated to the first and second waveguides. A first pressure is communicated to the top surface of the crystal member and an unknown pressure corresponding to the pressure of the environment is communicated to the bottom surface of the crystal member. The first pressure and the unknown pressure develop a pressure differential which act on the crystal member to deform the first and second waveguides. The deformation of the first and second waveguides modify the polarized light waves to create first and second output waves which are communicated to an optical interface where differences therebetween are extracted. The differences are analyzed by a computer to identify the current pressure and temperature of the environment.