Abstract:
A display may have an array of pixels. Each pixel may have a light-emitting diode such as an organic light-emitting diode. The organic light-emitting diodes may each have a reflective electrode such as a metal anode and a partially reflective electrode such as a metal cathode. Emissive material may be formed between the electrodes. The electrodes of each organic light-emitting diode may form an optical cavity. A wrinkled layer may be formed over the optical cavity to reduce sensitivity to process variations associated with forming encapsulation structures for the display. The wrinkled layer may include annealed organic layers. The organic layers may wrinkle during an annealing process at an annealing temperature. The annealed organic layers may include a first organic layer with a glass transition temperature below the annealing temperature and a second organic layer with a glass transition temperature above the annealing temperature.
Abstract:
An electronic device may be provided with a display. A content generator may generate frames of image data to be displayed on the display. The display may have an array of pixels that emit light to display images. The pixels may contain light-emitting devices such as organic light-emitting diodes, quantum dot light-emitting diodes, and light-emitting diodes formed from discrete semiconductor dies. As a result of aging, the light producing capabilities of the light-emitting devices may degrade over time. The electronic device may have a temperature sensor that gathers temperature measurements and an ambient light sensor. A pixel luminance degradation compensator may apply compensation factors to uncorrected pixel luminance values associated with the frames of image data to produce corresponding corrected pixel luminance values for the display. The compensation factors may be based on aging history information such as pixel luminance history, ambient light exposure, and temperature measurements.
Abstract:
An electronic device may be provided with a display. A content generator may generate frames of image data to be displayed on the display. The display may have an array of pixels that emit light to display images. The pixels may contain light-emitting devices such as organic light-emitting diodes, quantum dot light-emitting diodes, and light-emitting diodes formed from discrete semiconductor dies. As a result of aging, the light producing capabilities of the light-emitting devices may degrade over time. The electronic device may have a temperature sensor that gathers temperature measurements. A pixel luminance degradation compensator may apply compensation factors to uncorrected pixel luminance values associated with the frames of image data to produce corresponding corrected pixel luminance values for the display. The compensation factors may be based on aging history information such as pixel luminance history and temperature measurements.
Abstract:
An electronic device may be provided with an organic light-emitting diode display with minimized border regions. The border regions may be minimized by providing the display with bent edge portions having neutral plane adjustment features that facilitate bending of the bent edge portions while minimizing damage to the bent edge portions. The neutral plane adjustment features may include a modified backfilm layer of the display in which portions of the backfilm layer are removed in a bend region. A display device may include a substrate, a display panel on the substrate having display pixels, and peripheral circuitry proximate the display panel and configured to drive the display pixels. A portion of the periphery of the substrate may be bent substantially orthogonal to the display panel to reduce an apparent surface area of the display device. The bent portion may include an electrode for communication with the peripheral circuitry.
Abstract:
A display device may include a processor that may receive image data, such that the image data may include gray level data and display brightness value (DBV) data for a first pixel of a display. The processor may then determine a gain compensation factor associated with the first pixel based on a correction spatial map, a brightness adaptation lookup table (LUT), the gray level data, and the DBV data. The processor may then determine an offset compensation factor associated with the first pixel based on the correction spatial map, the brightness adaptation lookup table (LUT), the gray level data, and the DBV data. The processor may generate compensated gray level data by applying the gain compensation factor and the offset compensation factor to the gray level data and transmit the compensated gray level data to pixel driving circuitry associated with the first pixel.
Abstract:
An organic light-emitting diode display may have an array of pixels. The pixels may each have an organic light-emitting diode with a respective anode and may be formed from thin-film transistor circuitry formed on a substrate. A mesh-shaped path may be used to distribute a power supply voltage to the thin-film circuitry. The mesh-shaped path may have intersecting horizontally extending lines and vertically extending lines. The horizontally extending lines may be zigzag metal lines that do not overlap the anodes. The vertically extending lines may be straight vertical metal lines that overlap the anodes. The pixels may include pixels of different colors. Angularly dependent shifts in display color may be minimized by ensuring that the anodes of the differently colored pixels overlap the vertically extending lines by similar amounts.
Abstract:
A display may have an array of pixels formed from organic light-emitting diodes and thin-film transistor circuitry. A planarization layer may be interposed between the thin-film transistor circuitry and the organic light-emitting diodes. To protect the organic light-emitting diodes from photoactive compounds that may be outgassed from the planarization layer, an inorganic barrier layer may be interposed between the planarization layer and the organic light-emitting diodes. The inorganic barrier layer may be formed on top of and/or below a pixel definition layer that defines light-emitting zones for the organic light-emitting diodes. In another suitable arrangement, the inorganic barrier layer may itself define light-emitting zones and may be used in place of a polymer-based pixel definition layer. The inorganic barrier layer may include trenches in which the emissive material of the light-emitting diodes is formed.
Abstract:
A display may have an array of pixels formed from organic light-emitting diodes and thin-film transistor circuitry. A planarization layer may be interposed between the thin-film transistor circuitry and the organic light-emitting diodes. To protect the organic light-emitting diodes from photoactive compounds that may be outgassed from the planarization layer, an inorganic barrier layer may be interposed between the planarization layer and the organic light-emitting diodes. The inorganic barrier layer may be formed on top of and/or below a pixel definition layer that defines light-emitting zones for the organic light-emitting diodes. In another suitable arrangement, the inorganic barrier layer may itself define light-emitting zones and may be used in place of a polymer-based pixel definition layer. The inorganic barrier layer may include trenches in which the emissive material of the light-emitting diodes is formed.
Abstract:
An electronic device may be provided with an organic light-emitting diode display with minimized border regions. The border regions may be minimized by providing the display with bent edge portions having neutral plane adjustment features that facilitate bending of the bent edge portions while minimizing damage to the bent edge portions. The neutral plane adjustment features may include a modified backfilm layer of the display in which portions of the backfilm layer are removed in a bend region. A display device may include a substrate, a display panel on the substrate having display pixels, and peripheral circuitry proximate the display panel and configured to drive the display pixels. A portion of the periphery of the substrate may be bent substantially orthogonal to the display panel to reduce an apparent surface area of the display device. The bent portion may include an electrode for communication with the peripheral circuitry.
Abstract:
An electronic device includes a display and a sensor underneath the display. The display has a full pixel density region and a reduced pixel density region. Compared to pixels in the full pixel density region, pixels in the reduced pixel density region can be controlled using overdriven power supply voltages, overdriven scan control signals, different initialization and reset voltages, and can include capacitors and transistors with different physical and electrical characteristics. Gate drivers provide scan signals to pixels in the full pixel density region, whereas overdrive buffers provide overdrive scan signals to pixels in the reduced pixel density region. The pixels in the full pixel density region and the pixels in the reduced pixel density region can be controlled using different black level or gamma settings for each color channel and can be adjusted physically to match luminance, color, as well as to mitigate differences in temperature and aging impact.