Abstract:
An electronic device may have a housing in which components are mounted that produce heat. The heat producing components may be light-emitting diodes mounted on a flexible printed circuit in a display backlight, may be integrated circuits, or may be other devices that generate heat during operation. A heat spreading layer such as a layer of graphite may be attached to the backlight unit or other structures in the electronic device using adhesive. The adhesive may be patterned to form an unbonded area between at least some of the backlight unit or other structures to which the heat spreading layer is being attached and the heat spreading layer. The heat spreading layer may be mounted adjacent to a housing structure such as a metal midplate member that is attached to housing walls in the housing.
Abstract:
An electronic device may be provided with electrical components mounted in an electronic device housing. A display module may be attached to a display cover layer with a layer of adhesive to form a display module assembly. The display module assembly may include a display module assembly chassis. The display module assembly chassis may include a plastic display module assembly chassis molded over a metal display module assembly chassis. The display module assembly and a backlight unit may be assembled to form a display module that is installed within the electronic device housing or display module assembly layers and backlight unit structures may be assembled into the electronic device housing. The backlight unit may include a backlight unit chassis. A metal housing midplate may serve as part of the backlight unit chassis.
Abstract:
Display ground plane structures may contain slits. Image pixel electrodes in the display may be arranged in rows and columns. Image pixels in the display may be controlled using gate lines that are associated with the rows and data lines that are associated with the columns. An electric field may be produced by each image pixel electrode that extends through a liquid crystal layer to an associated portion of the ground plane. The slits in the ground plane may have a slit width. Data lines may be located sufficiently below the ground plane and sufficiently out of alignment with the slits to minimize crosstalk from parasitic electric fields. A three-column inversion scheme may be used when driving data line signals into the display, so that pairs of pixels that straddle the slits are each driven with a common polarity. Gate line scanning patterns may be used that enhance display uniformity.
Abstract:
An electronic device may have a flexible organic light-emitting diode display layer. The edge of the flexible display layer may be bent. The display may have pixels formed from organic light-emitting diodes having anodes characterized by anode surface normals. For pixels in some regions of the display such as the bent edge of the display, the display may be characterized by a display surface normal for a pixel that differs from an anode surface normal for the anode of the organic light-emitting diode of that pixel. By tilting the anodes in this way, color shifts due to off-axis viewing of the pixels in the bend edge of the display can be minimized. If desired, tilted anodes may have multiple areas with different tilts. Sets of pixels with different anode tilts or other characteristics that differ may be supplied with common pixel data values.