Abstract:
Various mechanisms for paging link-budget-limited (LBL) devices are disclosed, including: (1) transmitting paging message with non-conventional paging identifier; (2) transmitting paging message(s) with increased power; (3) repeating transmission of paging message to support combining at receiver. Various mechanisms for UE device to signal LBL status are disclosed, including, transmitting status flag or special value of DRX cycle to network node as part of tracking area update and/or attach request. The network node informs a base station of the device's LBL status as part of a paging message. (The network node may, e.g., assign an S-RNTI to the LBL device from a reserved subset of S-RNTI space.) The base station invokes a paging enhancement mechanism when paging an LBL device. Alternatively, the base station may page UE devices without knowledge of LBL status, e.g., by counting paging attempts for a given UE, and boosting power after the Nth paging attempt.
Abstract:
Methods and apparatus for recovering access data from a malfunctioning device. In one embodiment, trained service personnel are provided a specialized apparatus for retrieving access data from a malfunctioning device. For example, in the instance the device comprises a cellular device having an unrecoverable hardware failure, trained service personnel can connect to the secure element and retrieve the one or more electronic Subscriber Identity Modules (eSIMs) stored thereon. The eSIMs are then “reclaimed” and reprogrammed/distributed to a new device. In one implementation, security and integrity measures are taken to protect and control distribution of sensitive access data.
Abstract:
A user equipment device (UE) may implement improved communication methods which include radio resource time multiplexing, dynamic sub-frame allocation, and UE transmit duty cycle control. The UE may communicate with base stations using radio frames that include multiple sub-frames, transmit information regarding allocation of a portion of the sub-frames of a respective radio frame for each of a plurality of the radio frames, and transmit and receive data using allocated sub-frames and not using unallocated sub-frames. Additionally, the UE may operate according to a sub-frame allocation based on its current power state. The UE may transmit information to the base station and receive the sub-frame allocation based on at least the information and switch transmit duty cycles based on an occurrence of a condition at the UE. The UE may inform the network of the switch.
Abstract:
Methods and apparatus for activating a purchased or previously deployed device by a subscriber. In one embodiment, activation includes authenticating the device to a service provider or carrier, and providing the device with data necessary for enabling the service to the device. In one variant, a user device is activated at a retail store, with the assistance of a carrier representative. In another variant, user equipment is activated via a communications network without the assistance of a representative. In yet another variant, the user equipment is activated via the Internet without the assistance of a representative. The provision of access data includes pre-assigning eSIM from a population of unassigned eSIMs to certain devices for various carrier networks. Alternatively, the eSIM may be assigned on an as-needed basis. Unassigned and/or unused eSIMs can be released (or sold back to the vendor) and/or reused. Solutions for eSIM backup and restoration are also described.
Abstract:
A user equipment device (UE) may implement improved communication methods which include radio resource time multiplexing, dynamic sub-frame allocation, and UE transmit duty cycle control. The UE may communicate with base stations using radio frames that include multiple sub-frames, transmit information regarding allocation of a portion of the sub-frames of a respective radio frame for each of a plurality of the radio frames, and transmit and receive data using allocated sub-frames and not using unallocated sub-frames. Additionally, the UE may operate according to a sub-frame allocation based on its current power state. The UE may transmit information to the base station and receive the sub-frame allocation based on at least the information and switch transmit duty cycles based on an occurrence of a condition at the UE. The UE may inform the network of the switch.
Abstract:
In some embodiments, a user equipment device (UE) implements improved communication methods which include radio resource time multiplexing, dynamic sub-frame allocation, and UE transmit duty cycle control. In some embodiments, the UE may communicate with base stations using radio frames that include multiple sub-frames, transmit information regarding allocation of a portion of the sub-frames of a respective radio frame for each of a plurality of the radio frames, and transmit and receive data using allocated sub-frames and not using unallocated sub-frames. In some embodiments, the UE may operate according to a sub-frame allocation based on its current power state. The UE may transmit information to the base station and receive the sub-frame allocation based on at least the information. In some embodiments, the UE may switch transmit duty cycles based on an occurrence of a condition at the UE. The UE may inform the network of the switch.
Abstract:
Methods and apparatus enabling programming of electronic identification information of a wireless apparatus. In one embodiment, a previously purchased or deployed wireless apparatus is activated by a cellular network. The wireless apparatus connects to the cellular network using an access module to download operating system components and/or access control client components. The described methods and apparatus enable updates, additions and replacement of various components including Electronic Subscriber Identity Module (eSIM) data, OS components. One exemplary implementation of the invention utilizes a trusted key exchange between the device and the cellular network to maintain security.
Abstract:
Methods and apparatus for managing multiple user access control entities or clients. For example, in one embodiment, a “wallet” of electronic subscriber identity modules (eSIMs) may be stored and used at a user device and/or distributed to other devices for use thereon. In another embodiment, a networked server may store and distribute eSIM to a plurality of user devices in communication therewith. A database of available eSIM is maintained at the wallet entity and/or at the network which enables request for a particular eSIM to be processed and various rules for the distribution thereof to be implemented. Security precautions are implemented to protect both user and network carrier specific data as the data is transmitted between networked entities. Solutions for eSIM backup and restoration are also described.
Abstract:
Apparatus and method for maintaining hardware history profiles for a software-based emulator. In one embodiment, the disclosed software-based emulator monitors the history of the actual hardware device in a secondary device history, the history of the emulated hardware is presented within a primary device history. However, the primary device history is linked to the secondary device history, and receives the device wear history therefrom. In another aspect of the present invention, wear-leveling strategies are disclosed for handling various update sizes. Unlike existing solutions which are optimized for a single SIM that receives small data updates; various embodiments of the present invention are suitable for handling varying data sizes.
Abstract:
A wireless communications network may include multiple nodes, one of which is selected as a master node. The nodes may take turns broadcasting respective packets according to a predetermined broadcast schedule. During any given broadcast iteration, each node may broadcast a packet while the other remaining nodes receive the broadcast packet in parallel. In response to receiving the broadcast packet, each node may be configured to obtain desired estimated timing values. The estimated timing values may be transmitted back to the master node for use in computing time-of-flight information. Frequency-synchronization operations may be periodically performed to help reduce timing errors. The time-of-flight information, along with other location-based metrics, may be used in determining the relative positions of the multiple nodes in the network.