Abstract:
The present invention is a method and system for supporting a beamforming antenna system in a mobile broadband communication network with an improved beam pattern, beam sweep pattern, pilot channel design with feedback and reporting rules, and control signaling design. Specifically, the improved beam pattern includes a method of supporting wireless communications in a wireless network forming at least two spatial beams within a cell segment where the at least two spatial beams are associated with different power levels, and separately, where at least two spatial beams can be moved across the cell segment according to a unique sweep pattern. The pilot channel design improves network bandwidth performance and improves user mobility tracking Feedback and reporting rules can be established using a particular field designator, CQI, in the preferred embodiment.
Abstract:
A mobile station receives a downlink control structure in a first carrier, where the downlink control structure indicates that control information for the mobile station is on a second, different carrier. The mobile station decodes the control information in the second carrier, where the control information specifies resource allocation of a wireless link for the mobile station. More specifically, according to some implementations, the control channel in the first carrier specifies the resource allocation for an extended control channel in the second carrier, where the extended control channel specifies the resource allocation for traffic data of a wireless link for the mobile station.
Abstract:
In general, to provide acknowledgment information by a first wireless device, the first wireless device sends repeated instances of acknowledgment information in respective first and second frame structures, in response to receipt of first information from a second wireless device. In addition, the first wireless device also sends further acknowledgment information in the second frame structure that is responsive to second information received from the second wireless device.
Abstract:
The present invention is a method and system for supporting a beamforming antenna system in a mobile broadband communication network with an improved beam pattern, beam sweep pattern, pilot channel design with feedback and reporting rules, and control signaling design. Specifically, the improved beam pattern includes a method of supporting wireless communications in a wireless network forming at least two spatial beams within a cell segment where the at least two spatial beams are associated with different power levels, and separately, where at least two spatial beams can be moved across the cell segment according to a unique sweep pattern. The pilot channel design improves network bandwidth performance and improves user mobility tracking. Feedback and reporting rules can be established using a particular field designator, CQI, in the preferred embodiment.
Abstract:
An antireflective infrared cut filter coating may be applied on transparent substrates within electronic devices, such as sapphire or glass substrates. The transparent substrates may be windows for optical components or may be cover glasses for displays. The antireflective infrared cut filter coating may be formed from a thin-film interference filter having a plurality of thin-film layers of varying materials and thicknesses. The antireflective infrared cut filter coating may transmit light neutrally across visible wavelengths and may reflect infrared light. In this way, the antireflective infrared cut filter coating may reduce unwanted infrared light from reaching underlying optical components, such as wide-angle cameras, thereby reducing undesirable artifacts in images generated by the components.
Abstract:
A mobile station receives a downlink control structure in a first carrier, where the downlink control structure indicates that control information for the mobile station is on a second, different carrier. The mobile station decodes the control information in the second carrier, where the control information specitl.es resource allocation of a wireless link for the mobile station. More specifically, according to some implementations, the control channel in the first carrier specifies the resource allocation for an extended control channel in the second carrier, where the extended control channel specifies the resource allocation for traffic data of a wireless link for the mobile station.
Abstract:
In general, to provide acknowledgment information by a first wireless device, the first wireless device sends repeated instances of acknowledgment information in respective first and second frame structures, in response to receipt of first information from a second wireless device. In addition, the first wireless device also sends further acknowledgment information in the second frame structure that is responsive to second information received from the second wireless device.
Abstract:
The present invention is a method and system for supporting a beamforming antenna system in a mobile broadband communication network with an improved beam pattern, beam sweep pattern, pilot channel design with feedback and reporting rules, and control signaling design. Specifically, the improved beam pattern includes a method of supporting wireless communications in a wireless network forming at least two spatial beams within a cell segment where the at least two spatial beams are associated with different power levels, and separately, where at least two spatial beams can be moved across the cell segment according to a unique sweep pattern. The pilot channel design improves network bandwidth performance and improves user mobility tracking. Feedback and reporting rules can be established using a particular field designator, CQI, in the preferred embodiment.
Abstract:
Neighbor cell hearability can be improved by including an additional reference signal that can be detected at a low sensitivity and a low signal-to-noise ratio, by introducing non-unity frequency reuse for the signals used for a time difference of arrival (TDOA) measurement, e.g., orthogonality of signals transmitted from the serving cell sites and the various neighbor cell sites. The new reference signal, called the TDOA-RS, is proposed to improve the hearability of neighbor cells in a cellular network that deploys 3GPP EUTRAN (LTE) system, and the TDOA-RS can be transmitted in any resource blocks (RB) for PDSCH and/or MBSFN subframe, regardless of whether the latter is on a carrier supporting both PMCH and PDSCH or not. Besides the additional TDOA-RS reference signal, an additional synchronization signal (TDOA-sync) may also be included to improve the hearability of neighbor cells.
Abstract:
A mobile station receives a downlink control structure in a first carrier, where the downlink control structure indicates that control information for the mobile station is on a second, different carrier. The mobile station decodes the control information in the second carrier, where the control information specitl.es resource allocation of a wireless link for the mobile station. More specifically, according to some implementations, the control channel in the first carrier specifies the resource allocation for an extended control channel in the second carrier, where the extended control channel specifies the resource allocation for traffic data of a wireless link for the mobile station.