Abstract:
A clamp for holding a twisted lighting unit includes a body member having a slot extending from its top wall to its base. The slot extends from an end wall to a side wall to create a passage for receiving a twisted portion of a lighting unit. Parallel surfaces are provided over a portion of the width of the passage to hold the lighting unit in its intended position. Various curves in the slot receive the twist itself and facilitate insertion of the clamp on the lighting unit and reduce the strain experienced along the edge of the lighting unit.
Abstract:
The present disclosure is generally directed to a harmonics correction method and apparatus. In an embodiment, the method and apparatus are carried out in a light-emitting diode (“LED”) lighting unit that includes a set or string of LED lights. According to an embodiment, the LED lighting unit is a line-replaceable unit (“LRU”).
Abstract:
A system and appertaining method calibrate a color LED light unit comprising at least first-, second-, and third-color LEDs, comprising: a) defining a target color on a color map to calibrate; b) selecting initial calibration coefficients associated with the target color; c) storing the initial or updated calibration coefficients in a non-volatile memory of the light unit; d) controlling the light unit to drive the LEDs to attempt to emit the target color, producing an attempted color, utilizing the calibration coefficients; e) measuring the attempted color to determine if it matches the target color within a predefined tolerance; f) if the attempted color matches the target color, then terminating the method; g) if the attempted color does not match the target color, then performing the following; h) selecting a color component; i) adapting at least one calibration coefficient associated with the selected color component; and j) performing (c)-(i) again.
Abstract:
A system and appertaining method calibrate a color LED light unit comprising at least first-, second-, and third-color LEDs, comprising: a) defining a target color on a color map to calibrate; b) selecting initial calibration coefficients associated with the target color; c) storing the initial or updated calibration coefficients in a non-volatile memory of the light unit; d) controlling the light unit to drive the LEDs to attempt to emit the target color, producing an attempted color, utilizing the calibration coefficients; e) measuring the attempted color to determine if it matches the target color within a predefined tolerance; f) if the attempted color matches the target color, then terminating the method; g) if the attempted color does not match the target color, then performing the following; h) selecting a color component; i) adapting at least one calibration coefficient associated with the selected color component; and j) performing (c)-(i) again.
Abstract:
A light-emitting diode (LED) light module is provided, comprising: a single-piece printed circuit board (PCB) comprising the following integrated on the PCB: a plurality of LEDs in each of a plurality of LED groups; a power supply converter; a controller module comprising a processor, memory, operational program stored in the memory and executable by the processor; input/output (I/O) circuitry, and an LED driver that drives the LEDs; the module further comprising: a single metallic housing that contains the PCB; a heat sink that conducts heat from components on the PCB to the housing; and a lens for diffusing or directing lights from the LEDs.
Abstract:
A system for centrally controlled sanitization of a lavatory of an aircraft using ultraviolet (UV) light includes a first UV light source configured to emit a first UV light, and a second UV light source configured to emit a second UV light. The system further includes a central controller coupled to the first UV light source and the second UV light source and configured to independently control the first UV light source and the second UV light source to emit the first UV light and the second UV light at least one of at different times or for different durations.
Abstract:
A sanitization system for an aircraft may comprise: a power source; and a plurality of sanitizers in electrical communication with the power source, each sanitizer in the plurality of sanitizers configured to emit ultraviolet radiation having an average wavelength between 200 and 230 nm, the power source configured to provide power to each sanitizer in the plurality of sanitizers in succession during an occupied flight of the aircraft.
Abstract:
A self-disinfecting passenger control unit (PCU) includes a transparent or translucent molded or injected polycarbonate layer fused between inner and outer films, the outer film divided into contact surfaces (e.g., for passenger control of lights, call buttons, seats, and other functions) and the inner film including embedded traces. Within the molded polycarbonate layer are embedded LED units configured for continuous near-ultraviolet (near-UV) emission (e.g., at or near 405 nm), providing a uniform luminous output directed at the outer film and capable of antiviral/antibacterial irradiation of the high-touch contact surfaces of the outer film. As the continuous near-UV output is both visible by, and safe for, passengers, the LED units may double as backlighting for guiding passengers to the correct contact surface for adjusting a desired cabin function.
Abstract:
A user interface display may have a display and may have a backlight that lights the display. The display may implement pixels to generate colors and images. The display may be backlit. The backlight may use pixels having emitters to generate different color backlighting. In various instances, the display or the backlight or both may include a deep blue emitter. The blue emitter may be used in combination with red and green pixels elements to generate different colors. By implementing deep blue emitters rather than conventional blue (e.g., cyan) emitters, the effects of cyan light on a viewer's circadian rhythm may be limited or eliminated. Moreover, by implementing deep blue emitters, the effects of cyan light on a viewer's circadian rhythm may be varied, while the colors and images are reproduced for viewing without introducing significant color distortion.
Abstract:
A light assembly may comprise: a light array comprising a plurality of light emitting diodes (LEDs), each light emitting diode (LED) configured to emit an electromagnetic radiation having a wavelength, the wavelength of each LED being different, a first LED in the light array configured to emit a first wavelength between 414 nm and 474 nm; and a non-linear optical layer disposed adjacent to the first LED, the nonlinear optical layer configured to output the first wavelength and a second wavelength, the second wavelength being between 207 nm and 237 nm.