Abstract:
The invention relates to compositions, comprising. a) 1.00 to 65.00% by weight of at least one compound of formula (I), wherein R1, R2, R3, R4 are each independently H, C1-C6-alkyl, C1-C6-alkoxy, or C1-C6-alkoxy-C1-C6-alkyl; R is H or C1-C6-alkyl; X is CR6R7, O, or NR8; R6R7 are each independently H, C1-C6-alkyl, C1-C6-alkoxy, or C1-C6-alkoxy-C1-C6-alkyl; R8 is H, C1-C6-alkyl, or C1-C6-alkoxy-C1-C6-alkyl; k is 1, 2, 3, 4 or 5, as component A; b) 1.00 to 60.00% by weight of at least one monomer having two (meth)acrylate groups and having a molecular weight of no more than 500 Dalton, as component B; c) 0 to 25% by weight of at least one monomer having at least three (meth)acrylate groups and having a molecular weight of no more than 600 Dalton, as component C; and d) 1.00 to 30.00% by weight of at least one polymer having at least two (meth)acrylate groups and having a molecular weight of at least 700 Dalton, as component D; with the proviso that the amount of components A+B is at least 50% by weight, as well as the use of these compositions as printing inks, in particular inkjet printing inks.
Abstract:
A process for preparing isosorbide di(meth)acrylate by transesterifying alkyl (meth)acrylate with isosorbide, comprising the steps of: (i) reacting alkyl (meth)acrylate with isosorbide in the presence of a catalyst comprising titanium(IV) or zirconium(IV) and a stabilizer in the presence of an azeotroping agent which forms an azeotrope with the alcohol bound in the alkyl (meth)acrylate, (ii) continuously distilling off the azeotrope of azeotroping agent and alcohol, wherein steps (i) and (ii) are conducted simultaneously until the isosorbide has been essentially fully converted, (iii) adding water to the product mixture which comprises isosorbide (meth)acrylate and is obtained in steps (i) and (ii) and removing the hydrolyzate of the catalyst comprising titanium(IV) or zirconium(IV), (iv) distilling unconverted alkyl (meth)acrylate and azeotroping agent out of the product mixture, (v) distilling off water from the product mixture, wherein step (iv) can also be conducted before step (iii) and steps (iv) and (v) can also be conducted in one distillation step.
Abstract:
A process for preparing isosorbide ethoxylate di(meth)acrylate by transesterifying alkyl (meth)acrylate with isosorbide ethoxylate, comprising the steps of: (i) ethoxylating isosorbide to give isosorbide ethoxylate, (ii) reacting alkyl (meth)acrylate with isosorbide ethoxylate in the presence of potassium phosphate as catalyst and a stabilizer and in the presence of an azeotroping agent which forms an azeotrope with the alcohol bound in the alkyl (meth)acrylate, (iii) continuously distilling off the azeotrope of azeotroping agent and alcohol, wherein steps (ii) and (iii) are conducted simultaneously until the isosorbide ethoxylate has been essentially fully converted, (iv) removing the catalyst from the product mixture comprising isosorbide ethoxylate di(meth)acrylate, (v) distilling unconverted alkyl (meth)acrylate and azeotroping agent out of the product mixture.
Abstract:
A mixture comprising one or more compounds of the general formula (II)
where R6 is H, C1 to C20 alkyl, where C1 to C20 alkyl comprises straight-chain or branched C1 to C20 alkyl groups or cyclic C3 to C20 alkyl groups, alkanoyl having C1 to C8 alkyl, where C1 to C8 alkyl comprises straight-chain or branched C1 to C8 alkyl groups or cyclic C3 to C8 alkyl groups, cyanophenyl, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,4-dichlorophenyl, 3,4-dichlorophenyl, 2-bromophenyl, 3-bromophenyl, 4-bromophenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, dimethylphenyl, such as 3,4-dimethylphenyl, 2-methoxyphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 2-ethylphenyl, 3-ethylphenyl, 4-ethylphenyl, 2-ethoxyphenyl, 3-ethoxyphenyl, 4-ethoxyphenyl, 4-isopropylphenyl, benzyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, (carboxymethyl)phenyl, in which the carboxyl group may also be esterified with C1 to C6 alkyl, where C1 to C6 alkyl comprises straight-chain or branched C1 to C6 alkyl groups or cyclic C3 to C6 alkyl groups, (N,N-dimethylsulfonamido)phenyl, sulfonamidophenyl or 4-isopropoxyphenyl, R7 is H, C1 to C20 alkyl, where C1 to C20 alkyl comprises straight-chain or branched C1 to C20 alkyl groups or cyclic C3 to C20 alkyl groups, phenyl, carboxylic esters having C1 to C8 alkyl, where C1 to C8 alkyl comprises straight-chain or branched C1 to C6 alkyl groups or cyclic C3 to C8 alkyl groups, alkanoyl having C1 to C8 alkyl, where C1 to C8 alkyl comprises straight-chain or branched C1 to C8 alkyl groups or cyclic C3 to C8 alkyl groups, cyanophenyl, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,4-dichlorophenyl, 3,4-dichlorophenyl, 2-bromophenyl, 3-bromophenyl, 4-bromophenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, dimethylphenyl, such as 3,4-dimethylphenyl, 2-methoxyphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 2-ethylphenyl, 3-ethylphenyl, 4-ethylphenyl, 2-ethoxyphenyl, 3-ethoxyphenyl, 4-ethoxyphenyl, 4-isopropylphenyl, benzyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, (carboxymethyl)phenyl, in which the carboxyl group may also be esterified with C1 to C6 alkyl, where C1 to C6 alkyl comprises straight-chain or branched C1 to C6 alkyl groups or cyclic C3 to C6 alkyl groups, (N,N-dimethylsulfonamido)phenyl, sulfonamidophenyl or 4-isopropoxyphenyl, and R8 is H, C1 to C20 alkyl, where C1 to C20 alkyl comprises straight-chain or branched C1 to C20 alkyl groups or cyclic C3 to C20 alkyl groups, phenyl, carboxylic esters having C1 to C8 alkyl, where C1 to C8 alkyl comprises straight-chain or branched C1 to C8 alkyl groups or cyclic C3 to C8 alkyl groups, alkanoyl having C1 to C8 alkyl, where C1 to C8 alkyl comprises straight-chain or branched C1 to C8 alkyl groups or cyclic C3 to C8 alkyl groups, cyanophenyl, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,4-dichlorophenyl, 3,4-dichlorophenyl, 2-bromophenyl, 3-bromophenyl, 4-bromophenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, dimethylphenyl, such as 3,4-dimethylphenyl, 2-methoxyphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 2-ethylphenyl, 3-ethylphenyl, 4-ethylphenyl, 2-ethoxyphenyl, 3-ethoxyphenyl, 4-ethoxyphenyl, 4-isopropylphenyl, benzyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, (carboxymethyl)phenyl, in which the carboxyl group may also be esterified with C1 to C6 alkyl, where C1 to C6 alkyl comprises straight-chain or branched C1 to C6 alkyl groups or cyclic C3 to C6 alkyl groups, (N,N-dimethylsulfonamido)phenyl, sulfonamidophenyl or 4-isopropoxyphenyl, and (meth)acrylic acid and/or C1 to C8 alkyl (meth)acrylates.
Abstract:
The presently claimed invention relates to use of an aqueous polymer latex as a binder or co-binder in a waterborne coating composition, wherein the aqueous polymer latex is obtained by polymerizing a monomer composition M, comprising at least one tert-butyl acrylate and/or tertbutyl methacrylate monomer, by radical emulsion polymerization.
Abstract:
A method for producing a tridimensional structure by 3D printing comprises: (a) ejecting an object material through a first print head, the object material comprising a radically curable compound and a photoinitiator; (b) ejecting a supporting material through a second print head, the supporting material comprising a cationically polymerizable compound and a photoacid generator; (c) radiation curing the object material and the supporting material; steps (a) to (c) are repeated several times in order to form the tridimensional structure layer by layer, and the object material and the supporting material comprise at least one common boundary surface; and (d) removing the cured supporting material by treatment with an aqueous medium. The supporting material is suitable for supporting overhanging components and structures located above hollow spaces. The use of a supporting material cured by a different mechanism than the object material prevents undesirable interactions between the object material and the supporting material during curing.
Abstract:
The invention relates to a process for preparing a C8-C24 alkyl(meth)acrylate by transesterification of methyl(meth)acrylate with a C8-C24 alkanol, said process comprising the steps of:(i) reacting methyl(meth)acrylate with the C8-C24 alkanol in the presence of a tin-comprising catalyst and a stabilizer in the presence of an entraining agent which forms an azeotrope with methanol,(ii) continuously distilling off the azeotrope of entraining agent and methanol wherein steps (i) and (ii) are carried out simultaneously until the C8-C24 alkanol has been substantially completely reacted,(iii) washing with an aqueous alkaline washing solution the C8-C24 alkyl (meth)acrylate-comprising product mixture obtained in steps (i) and (ii) to remove from the product mixture the tin-comprising catalyst and at least some of the stabilizer,(iv) distilling off unconverted methyl(meth)acrylate and entraining agent from the product mixture,(v) distilling off water from the product mixturewherein a product having a by-product content of
Abstract:
An aqueous polymer latex obtainable by polymerizing, optionally in the presence of a seed latex, a monomer composition M by radical emulsion polymerization, wherein the monomer composition M comprises, based on the total weight of the monomer composition M: a) 0.5 to 30% by weight of 2-octyl acrylate, b) 25 to 55% by weight of n-butyl acrylate, c) 35 to 65% by weight of methyl methacrylate, d) 0 to 5% by weight of one or more monoethylenically unsaturated carboxylic acids, e) 0 to 5% by weight of one or more monoethylenically unsaturated carboxylic acid amides, f) 0 to 10% by weight of one or more further ethylenically unsaturated non-ionic monomers different from monomers a), b), c), d) and e).
Abstract:
Described is a pressure-sensitive adhesive composition in the form of an aqueous polymer dispersion comprising a dispersed pressure-sensitive adhesive polymer formed by emulsion polymerization of isobutyl acrylate, 2-ethylhexyl acrylate and/or 1-octyl acrylate and styrene, monomers having at least one acid group and optionally further monomers. The pressure-sensitive adhesive composition may be used to produce self-adhesive articles such as self-adhesive labels, self-adhesive tapes or self-adhesive films.