Abstract:
A process for producing foamed thermoplastic polyurethane particles comprises the steps of a) melting a thermoplastic polyurethane in a first extruder (E1), b) injecting a gaseous blowing agent in a second extruder (E2), c) impregnating the gaseous blowing agent homogeneously into the thermoplastic polyurethane melt in a third extruder (E3), d) extruding the impregnated thermoplastic polyurethane melt through a die plate and granulating the melt in an underwater granulation device under temperature and pressure conditions to form foamed thermoplastic polyurethane particles.
Abstract:
The invention relates to a flame-retardant thermoplastic polyurethane based on at least one diisocyanate and on at least one substance reactive toward isocyanate, and preferably on at least one chain extender, and also optionally on at least one catalyst, and comprising at least one flame retardant, and also optionally additives and/or auxiliaries, where one flame retardant is a metal hydroxide at least to some extent surrounded by a coating, and the metal hydroxide is aluminum hydroxide, aluminum oxide hydroxide, or a mixture of said hydroxides, and also to an associated production process and use.
Abstract:
An automation system controls an automated production process of an industrial plant including a plurality of equipment for performing the production process. The system includes an augmented reality system, including a database system configured to store data and spatial coordinates associated with respective equipment of the plurality of equipment, augmented reality glasses configured to display the data, and executable program logic coupled to the augmented reality glasses. The executable program logic receives an up-to-date spatial position of a user from a positioning system and the data of equipment that are located in a proximity of the up-to-date spatial position of the user from the database system and control the augmented reality glasses for display of at least some of the received data.
Abstract:
The present teachings relate to a method for monitoring and/or controlling a production process for manufacturing at least one industrial product at an industrial plant comprising at least one equipment by processing at least one input, the method comprising: receiving, via an input inter-face, real-time process data from the equipment; determining, via the computing unit, a subset of the real-time process data; providing as output data the subset of the real-time process data. The present teachings also relate to a system, a use, and a software product.
Abstract:
The invention relates to a flame-retardant thermoplastic polyurethane based on at least one diisocyanate and on at least one substance reactive toward isocyanate, and preferably on at least one chain extender, and also optionally on at least one catalyst, and comprising at least one flame retardant, and also optionally additives and/or auxiliaries, where one flame retardant is a metal hydroxide at least to some extent surrounded by a coating, the material comprises, as further flame retardant, at least one phosphorus-containing flame retardant which is a derivative of phosphoric acid, phosphonic acid, and/or phosphinic acid and the material further comprises hydrotalcite and/or phyllosilicate, and also to an associated production process and the use.
Abstract:
The invention relates to a flame-retardant thermoplastic polyurethane based on at least one diisocyanate and on at least one substance reactive toward isocyanate, and preferably on at least one chain extender, and also optionally on at least one catalyst, and comprising at least one flame retardant, and also optionally additives and/or auxiliaries, where one flame retardant is a metal hydroxide at least to some extent surrounded by a coating, and the metal hydroxide is aluminum hydroxide, aluminum oxide hydroxide, or a mixture of said hydroxides, and also to an associated production process and use.
Abstract:
The invention relates to a process for production of expanded pellets from a polymer melt comprising a blowing agent, said process comprising the steps of: a) pressing the polymer melt comprising a blowing agent through a perforated disk controlled to a temperature between 150° C. and 280° C. and into a pelletizing chamber, b) using a cutting device to comminute the polymer melt pressed through the temperature-controlled perforated disk into individual expanding pellets, c) discharging the pellets from the pelletizing chamber using a liquid stream, wherein the blowing agent comprises CO2 or N2 or a combination of CO2 and N2 and the pelletizing chamber is traversed by a stream of liquid which is controlled to a temperature between 10° C. and 60° C. and the pressure of which is from 0.7 bar to 20 bar above ambient pressure, the pressure and temperature for the liquid in the pelletizing chamber and also the temperature for the perforated disk being chosen such that the pellets are expanded in the pressurized liquid by the blowing agent they contain so as to produce expanded pellets having an uninterrupted skin.
Abstract:
The invention relates to a flame-retardant thermoplastic polyurethane based on at least one diisocyanate and on at least one substance reactive toward isocyanate, and preferably on at least one chain extender, and also optionally on at least one catalyst, and comprising at least one flame retardant, and also optionally additives and/or auxiliaries, where one flame retardant is a metal hydroxide at least to some extent surrounded by a coating, the material comprises, as further flame retardant, at least one phosphorus-containing flame retardant which is a derivative of phosphoric acid, phosphonic acid, and/or phosphinic acid and the material further comprises hydrotalcite and/or phyllosilicate, and also to an associated production process and the use.