Abstract:
The present invention relates to a process for carbonylating allyl alcohols at low temperature, low pressure and/or low catalyst loading. In an alternative embodiment, an acylation product of the allyl alcohol is used for the carbonylation. The present invention likewise relates to the preparation of conversion products of these carbonylation products and specifically of (−)-ambrox.
Abstract:
The present invention relates to a method for isomerizing a 3-(Z)-unsaturated carboxylic acid of the formula 1-Z or a salt thereof, wherein R2 is C1-C24-alkyl, C2-C24-alkenyl having 1, 2, 3 or more than 3 C—C double bonds, unsubstituted or substituted C5-C12-cycloalkyl, or unsubstituted or substituted aryl; R1 is hydrogen or has one of the definitions specified for R2; with the proviso that R2 has a higher priority than R1 in accordance with IUPAC; to give a 3-(E)-unsaturated carboxylic acid of the formula I-E or a salt thereof, wherein the isomerization of the compound of the formula 1-Z is effected in the presence of an anhydride of an organic acid and a base or in the presence of a ketene of formula CR11R12C(0), wherein R11 and R12 are as defined in the claims and in the specification and a base. In particular, the present invention relates to a method for preparing compositions with increased content of (3E,7E)-homofarnesylic acid starting from compositions comprising (3Z,7E)- and (3E,7E)-homofarnesylic acid.
Abstract:
The present invention relates to a two-stage hydroformylation process for producing pound of the formula (I) and to a process for producing a compound of the formula (V) comprising the two-stage hydroformylation process for producing a compound of the formula (I) followed by hydrogenation of the compound of the formula (I).
Abstract:
A process for preparing an isocyanate compound is provided. The process includes a step of reacting an amine compound A having at least one primary amino group with CO2 and an organotin compound S having at least one radical OR3 attached to the tin atom of the organotin compound to convert at least one of the primary amino groups in the amine compound A into a carbamate group to obtain a carbamate compound C; a step of cleaving the carbamate groups in the obtained carbamate compound C to form the isocyanate compound and an alcohol R3OH, without separation of the tin compounds; and a step of obtaining the isocyanate compound. The radical R3 is a C-bound organic radical of 1-30 carbon atoms with 1, 2, or 3 carbon atoms optionally replaced by oxygen or nitrogen.
Abstract:
3-Hydroxypropionic acid esters are obtained by reacting ethylene oxide with carbon monoxide in the presence of a cobalt catalyst, wherein poly-3-hydroxypropionate is obtained; and transesterification of the poly-3-hydroxypropionate with an alcohol in the presence of a transesterification catalyst, wherein the 3-hydroxypropionic acid ester is obtained. The transesterification catalyst is a compound of the formula MLx, where M is a metal of main groups 2, 3 or 4 or transition groups 3 to 8 of the Periodic Table of the Elements, L is a ligand which is bonded directly to M via a C, an O, a P, an S and/or an N atom, and x is an integer from 2 to 6.
Abstract:
The present invention is in the field of processes for the generation of thin inorganic films on substrates. More specifically, the present invention relates to a process comprising bringing a compound of general formula (I) into the gaseous or aerosol state and depositing the compound of general formula (I) from the gaseous or aerosol state onto a solid substrate, wherein R11, R12, R13, R14, R15, R16, R17, R18 are independent of each other hydrogen, an alkyl group, an aryl group, or a trialkylsilyl group, R21, R22, R23, R24 are independent of each other an alkyl group, an aryl group, or a trialkylsilyl group, n is 1 or 2, M is a metal or semimetal, X is a ligand which coordinates M, and m is an integer from 0 to 3.
Abstract:
The application relates to a process for the work-up of a reaction mixture (RM) comprising cyclododecatriene and an active catalyst system (C) comprising an organoaluminum compound, said process comprising the steps of: a) contacting the reaction mixture (RM) with gaseous ammonia to obtain a first mixture (M1), b) contacting the first mixture (M1) with water to obtain a second mixture (M2), c) distillatively removing cyclododecatriene from the second mixture (M2).
Abstract:
Method for hydrogenating an ester with molecular hydrogen to the corresponding alcohols in the presence of a ruthenium complex (I), wherein said complex comprises a tridentate ligand L of the general formula (II) n and m are each independently 0 or 1, and the solid-dashed double lines represent a single or double bond, with the proviso that in the case of n=1 both solid-dashed double lines represent a single bond and m is 1, and in the case of n=0 one solid-dashed double line represents a single bond and the other solid-dashed double line represents a double bond, wherein in the case of a double bond on the side facing the phenyl ring m=1, in the case of a double bond on the side facing the pyridyl ring m=0, or both solid-dashed double lines represent a single bond and m is 1.
Abstract:
A process for performing a continuous gas/liquid biphasic high-pressure reaction, wherein a gas and a liquid are introduced into a backmixed zone of a reactor and in the backmixed zone the gas is dispersed in the liquid by stirring, injection of gas and/or a liquid jet, a reaction mixture consecutively traverses the backmixed zone and a zone of limited backmixing, and a liquid reaction product is withdrawn at a reaction product outlet of the zone of limited backmixing, wherein the reactor comprises: an interior formed by a cylindrical vertically oriented elongate shell, a bottom and a cap, wherein the interior is divided by means of internals into the backmixed zone, the zone of limited backmixing and a cavity, a first cylindrical internal element which in the interior extends in the longitudinal direction of the reactor and which delimits the zone of limited backmixing from the backmixed zone, backmixing-preventing second internal elements in the form of random packings, structured packings or liquid-permeable trays arranged in the zone of limited backmixing and a third internal element which in the interior extends in the longitudinal direction of the reactor and is open at the bottom, wherein the third internal element forms the cavity in which gas bubbles collect and do not escape upwards, thus preventing the volume of the cavity from being occupied by liquid and reducing the reaction volume. The reaction volume of the reactor used in the process can be reversibly reduced in simple fashion. The invention further relates to a process for adapting the reaction volume of a reactor suitable for performing a gas/liquid biphasic high-pressure reaction having an outlet for a liquid reaction product in which an internal element is arranged so as to form a cavity open at the bottom in which gas bubbles collect and do not escape upwards, thus preventing the volume of the cavity from being occupied by liquid and reducing the reaction volume.
Abstract:
A reactor for performing a reaction between two immiscible fluids of different density, comprising an interior formed by a cylindrical, vertically oriented elongate shell, a bottom and a cap, wherein the interior is divided by internals into a backmixed zone, a zone of limited backmixing preferably arranged below the backmixed zone and a plug-flow zone which are at least consecutively traversable by one of the fluids, wherein the backmixed zone comprises at least one inlet and the plug-flow zone comprises an outlet and the backmixed zone comprises at least one mixing apparatus selected from a stirrer, a jet nozzle and means for injecting the fluid of lower density, a first cylindrical internal element which in the interior extends in the longitudinal direction of the reactor, which delimits the zone of limited backmixing from the plug-flow zone and which comprises a first passage to the backmixed zone and a second passage to the plug-flow zone, a second internal element which delimits the backmixed zone from the plug-flow zone such that there is no direct fluid connection between the backmixed zone and the plug-flow zone, and backmixing-preventing third internal elements in the form of random packings, structured packings or liquid-permeable trays arranged in the zone of limited backmixing. The reactor allows an optimal residence time distribution in the reaction of the two immiscible fluids of different density. The invention further relates to a process for performing a continuous reaction in the reactor.