Abstract:
A process for separating off acid gases from a water-comprising fluid stream wherein the water-comprising fluid stream is contacted in an absorption zone with an absorbent, producing a deacidified fluid stream and an acid gas-loaded absorbent; the deacidified fluid stream is contacted in a scrubbing zone with an aqueous scrubbing liquid, producing a deaminated, deacidified fluid stream and an amine-loaded scrubbing liquid which is cooled, producing an absorber top condensate; the loaded absorbent is passed into a desorption zone producing a regenerated absorbent and desorbed acid gases; the regenerated absorbent is returned to the absorption zone in order to form an absorbent circuit, to which the amine-loaded scrubbing liquid and the absorber top condensate are introduced; and the desorbed acid gases are conducted through an enrichment zone and the acid gases exiting at the top of the enrichment zone are cooled, producing a desorber top condensate.
Abstract:
The present invention is related to a method for determination of unit operations of a chemical plant for acid gas removal, the method carried out by a computer or a distributed computer system and the method comprising the steps of: providing (S1) a first set of parameters for the unit operations; providing (S2) a second set of parameters for the unit operations based on the provided first set of parameters and based on data retrieved from a database; determining (S3) a digital model of the chemical plant based on the first set of parameters and the second set of parameters, wherein the digital model comprises a system of equations defining the unit operations of the chemical plant; selecting (S4) starting points for an equation-based solution method of the system of equations, wherein the starting points are at least partially selected from the: —i) the first set of parameters; —ii) the second set of parameters; and —iii) the data retrieved from the database; determining (S5) resultant settings for the unit operations of the chemical plant using the equation-based solution method for the system of equations initialized by the selected starting points.
Abstract:
A plant for removing CO2 from a fluid stream via an aqueous absorption medium contains a) a first absorption zone for treating the fluid stream with a partially regenerated absorption medium, b) a second absorption zone for treating the treated fluid stream with a regenerated absorption medium, c) a first flash vessel for depressurizing the loaded absorption medium, d) a second flash vessel for depressurizing the sub-partially regenerated absorption medium, e) a stripper for thermally regenerating the partially regenerated absorption medium, f) a conduit for feeding a substream of the partially regenerated absorption medium into the first absorption zone and a conduit for feeding a further substream of the partially regenerated absorption medium into a stripper, g) a conduit for recirculating the regenerated absorption medium to the second absorption zone, and h) a jet pump for compressing the water vapor-comprising, second CO2-comprising gas stream.
Abstract:
A process for preparing methanol from a carbon-containing feedstock by producing synthesis gas therefrom in a synthesis gas production unit, converting the synthesis gas to methanol in a methanol synthesis unit and working up the reaction mixture obtained stepwise to isolate the methanol, wherein the carbon monoxide, carbon dioxide, dimethyl ether and methane components of value from the streams separated off in the isolation of the methanol are combusted with an oxygenous gas, and the carbon dioxide in the resultant flue gas is separated off in a carbon dioxide recovery unit and recycled to the synthesis gas production unit and/or to the methanol synthesis unit.
Abstract:
The present invention is related to a method for determination of unit operations of a chemical plant for acid gas removal, the method carried out by a computer or a distributed computer system and the method comprising the steps of: providing a first set of parameters for the unit operations; providing a second set of parameters for the unit operations based on the provided first set of parameters and based on data retrieved from a database; determining a digital model of the chemical plant based on the first set of parameters and the second set of parameters, wherein the digital model comprises a system of equations defining the unit operations of the chemical plant; selecting starting points for an equation-based solution method of the system of equations, wherein the starting points are at least partially selected from the: (i) the first set of parameters; (ii) the second set of parameters; and (iii) the data retrieved from the database; determining resultant settings for the unit operations of the chemical plant using the equation-based solution method for the system of equations initialized by the selected starting points.
Abstract:
In a process for removing CO2 from a fluid stream by means of an aqueous absorption medium, a) the fluid stream is introduced into a first absorption zone and treated with partially regenerated absorption medium, b) the treated fluid stream is treated with regenerated absorption medium in a second absorption zone, giving a fluid stream which has been freed of CO2 and a loaded absorption medium, c) the loaded absorption medium is depressurized in a first flash vessel to a pressure of from 1.2 to 3 bar absolute, giving a sub-partially regenerated absorption medium and a first CO2-comprising gas stream, d) the sub-partially regenerated absorption medium is depressurized in a second flash vessel to a pressure of from 1 to 1.2 bar absolute, giving a partially regenerated absorption medium and a water vapor-comprising, second CO2-comprising gas stream, e) a substream of the partially regenerated absorption medium is fed into the first absorption zone and a further substream of the partially regenerated absorption medium is fed into a stripper in which the partially regenerated absorption medium is thermally regenerated, with regenerated absorption medium and a third CO2-comprising gas stream being obtained and the stripper being operated at a pressure which is at least 0.9 bar higher than the pressure in the first flash vessel, f) the regenerated absorption medium is recirculated to the second absorption zone, g) the water vapor-comprising, second CO2-comprising gas stream is compressed by means of a jet pump and brought into direct heat exchange contact with the loaded absorption medium in the first flash vessel, with the jet pump being operated by means of the third CO2-comprising gas stream. The latent heat of the water vapor-comprising gas streams remains in the process and the use of a costly compressor is dispensable.
Abstract:
A process for removing acid gases from a water vapor-containing fluid stream comprises a) providing an absorption liquid which is incompletely miscible with water; b) treating the fluid stream in an absorption zone with the absorption liquid to obtain an acid gas-depleted treated fluid stream and an acid gas-loaded absorption liquid; c) directing the treated fluid stream to a rehydration zone and treating the fluid stream with an aqueous liquid to volatilize at least part of the aqueous liquid; d) regenerating the loaded absorption liquid to expel the acid gases at least in part and obtain a regenerated absorption liquid, and directing the regenerated absorption liquid to step b); and e) separating, from the absorption liquid, an aqueous liquid that has condensed in the absorption zone, and directing the aqueous liquid to step c). The process allows for an efficient removal of water accumulated in the absorption liquid system.
Abstract:
A process for separating off acid gases from a water-comprising fluid stream wherein the water-comprising fluid stream is contacted in an absorption zone with an absorbent, producing a deacidified fluid stream and an acid gas-loaded absorbent; the deacidified fluid stream is contacted in a scrubbing zone with an aqueous scrubbing liquid, producing a deaminated, deacidified fluid stream and an amine-loaded scrubbing liquid which is cooled, producing an absorber top condensate; the loaded absorbent is passed into a desorption zone producing a regenerated absorbent and desorbed acid gases; the regenerated absorbent is returned to the absorption zone in order to form an absorbent circuit, to which the amine-loaded scrubbing liquid and the absorber top condensate are introduced; and the desorbed acid gases are conducted through an enrichment zone and the acid gases exiting at the top of the enrichment zone are cooled, producing a desorber top condensate.