Abstract:
A constant-velocity drive system for a rotary-wing aircraft rotor comprising a differential torque-splitting mechanism and a gimbal mechanism is disclosed. A rotary-wing aircraft having a rotary-wing aircraft rotor comprising a differential torque- splitting mechanism and a gimbal mechanism is disclosed.
Abstract:
A rotor-hub for a rotary-wing aircraft is disclosed. The rotor-hub comprises a yoke comprising a plurality of yoke arms and a plurality of yoke straps, wherein the yoke arms are joined together by the yoke straps, and wherein a plurality of inner walls of the yoke define a central void space. A pitch horn is movably connected to the yoke and a portion of the pitch horn is located within the central void space. A connecting shell is fixedly attached to the yoke.
Abstract:
A vibration isolator is disclosed having a housing which defines a fluid chamber. A piston, which is movable to and from a down position, is disposed within the housing. A vibration isolation fluid is disposed within the fluid chamber. A passage having a predetermined diameter extends through the piston to permit the vibration isolation fluid to flow from one fluid chamber to the other. An elastic element is provided for reducing transmission of vibrations from the piston to the housing when the piston is at the down position.
Abstract:
A transmission for a rotary-wing aircraft has a differential torque-splitting mechanism associated with an input shaft. The differential has a drive disk coaxial with the shaft and integral in rotation with the shaft, a first driven member coaxial with the shaft and generally adjacent the drive disk, and a second driven member coaxial with the shaft and generally adjacent the drive disk. At least one pin engages each of the drive disk, the first driven member, and the second driven member. The first driven member is configured to drive a first transfer gear, and the second driven member is configured to drive a second transfer gear for supplying torque to a bull gear associated with a rotor mast.
Abstract:
A pitch control system for blades on a rotor of an aircraft has a gimballing rotor hub and a plurality of step-over arms connected to the hub and capable of pivoting relative to the hub about a pivot axis. Each of a plurality of pitch links connects one of the step-over arms to a flight control system for pivoting the connected step-over arm about the pivot axis and relative to the hub in response to inputs from the control system. Each of a plurality of step-over links connects one of the step-over arms to one of the blades for rotating the associated blade about the pitch axis in response to pivoting of the associated step-over arm.
Abstract:
An assembly for providing flexure to a blade of a rotary blade system includes an upper support plate having an upper curved surface, a lower support plate having a lower curved surface, and a yoke positioned therebetween. At least one of the upper and lower yoke surfaces has a layer of cushioning material positioned thereon and secured thereto. An alternate embodiment includes an assembly for providing flexure to a blade of a rotary blade system, including, an upper support plate having an upper curved surface, a lower support plate having a lower curved surface, and a yoke positioned therebetween and directly contacting the support plates wherein one of the curved surfaces is a non-circular arc that does not form part of the circumference of a circle. Another alternate embodiment includes a similar assembly having a twist-shank type of yoke for providing rotation of attached blades about their respective pitch axes.
Abstract:
A tunable vibration isolator (451, 551, 651, 681, 691, 721, 801, 901, 973) with active tuning elements (473, 475, 573, 673, 675, 689, 705, 707, 745, 747, 747, 819a, 819b) having a housing which defines fluid chambers. A piston (455, 555, 655, 695, 725, 805, 970) is disposed within the housing. A vibration isolation fluid is disposed within the fluid chambers. A passage (463, 563, 663, 735, 881, 904) having a predetermined diameter extends through the piston to permit the vibration isolation fluid to flow from one fluid chamber to the other. The tunable vibration isolator may employ either a solid tuning mass approach or a liquid tuning mass approach. In either case, active tuning elements, or actuators, are disposed in the fluid chambers to selectively tune the vibration isolator.
Abstract:
A constant-velocity drive system for a rotary-wing aircraft rotor comprising a differential torque-splitting mechanism and a gimbal mechanism is disclosed. A rotary-wing aircraft having a rotary-wing aircraft rotor comprising a differential torque- splitting mechanism and a gimbal mechanism is disclosed.
Abstract:
A preferred embodiment of a pylon has six pylon mounting links for mounting the pylon to an airframe. Each link is considered "near-rigid" and has a spherical-bearing rod-end on both ends such that the link can only transmit axial loads. At least one of the links has a mass carried within the link and selectively moveable by an actuating means along the axis of the link in an oscillatory manner for attenuating vibrations traveling axially through the link. The actuating means may be an electromechanical, hydraulic, pneumatic, or piezoelectric system. By mounting each link in a selected orientation relative to the other links, the actuating means may be operated in a manner that attenuates axial vibration that would otherwise be transmitted through the link and into the airframe.
Abstract:
An assembly for providing flexure to a blade of a rotary blade system includes an upper support plate having an upper curved surface, a lower support plate having a lower curved surface, and a yoke positioned therebetween. At least one of the upper and lower yoke surfaces has a layer of cushioning material positioned thereon and secured thereto. An alternate embodiment includes an assembly for providing flexure to a blade of a rotary blade system, including, an upper support plate having an upper curved surface, a lower support plate having a lower curved surface, and a yoke positioned therebetween and directly contacting the support plates wherein one of the curved surfaces is a non-circular arc that does not form part of the circumference of a circle. Another alternate embodiment includes a similar assembly having a twist-shank type of yoke for providing rotation of attached blades about their respective pitch axes.