Abstract:
One embodiment of the invention is directed to an imaging device comprising an image sensor comprising an array of pixels, and a mask coupled with the image sensor, the mask configured to darken at least one pixel in the array of pixels.
Abstract:
A method of determining a normalized quantity of an analyte adhering to beads ( 310 ) in a detection area ( 312 ) of a bead-based assaying system ( 300 ), the method comprising: a) causing a complex of the analyte to fluorescently or chemically emit a first light ( 2 ), or to release a dye; b) measuring an integrated intensity of the first light emitted from the beads in the detection area, or a concentration of the dye released from the beads in the detection area, or both; c) causing light ( 1 ) to interact with the beads in the detection area, the interaction not depending on whether or how much analyte is adhering to the beads; d) measuring a second light ( 1 ) resulting from the interaction with the beads which does not depend on the analyte; and e) determining the normalized quantity of analyte from the integrated intensity of the first light or concentration of the dye or both, and from the measured second light.
Abstract:
Methods and digital imaging devices disclosed herein are adapted to capture images of a specimen in a chemical reaction using a series of short exposures of light emissions from the specimen over a period of time. The series of short exposures is captured using an array of pixels of an image sensor in the digital imaging device that are configured for performing continuous non-destructive read operations to read out a set of non-destructive read images of the specimen from the pixel array. In one embodiment, images are captured by delaying the read out until at or near the end of the chemical reaction to reduce read noise in the images. The signals read out from the image sensor can be continuously monitored and the capturing of images can be discontinued either automatically or based on a command from a user. The captured images can then be displayed in a graphical display.
Abstract:
A tip for use in an optical detection system to analyze an analyte in a fluid sample drawn into the tip, using light reflected from a detection surface inside the tip that the analyte binds to, comprising a first detection surface and a second detection surface located in a same flow path with no controllable valve separating them, wherein the first and second detection surfaces have different surface chemistries.
Abstract:
Provided herein are imaging cassettes for detecting a luminescent and/or radioactive signals. Such cassettes are useful in common biological assays, e.g., immunoassays, nucleotide detection assays, and other affinity assays.
Abstract:
Devices, systems, methods, and kits for contact imaging are provided. A contact imaging device includes an imaging sensor, a fixed fiber faceplate mechanically coupled to the imaging sensor, and an optical filtering layer mechanically coupled to the fixed fiber faceplate. The optical filtering layer can include an interference filter, an absorptive filter, and/or a removable fiber faceplate. The contact imaging device can be used to image fluorescent samples by filtering out excitation light on the basis of wavelength and/or angle of incidence.
Abstract:
One embodiment of the invention is directed to an imaging device comprising an image sensor comprising an array of pixels, and a mask coupled with the image sensor, the mask configured to darken at least one pixel in the array of pixels.
Abstract:
An SPR sensor comprising: a thin conducting layer comprising at least one conductive element formed on a surface of a transparent substrate; an illumination system controllable to illuminate an interface between the conducting layer and the substrate; a photosensitive surface that generates signals responsive to light from the light source that is reflected from a region of the interface; a flow cell formed with at least one flow channel having a lumen defined by a wall at least a portion of which is formed from an elastic material and a portion of which is formed by a region of the conducting layer; and at least one hollow needle having an exit orifice communicating with the needle's lumen and wherein fluid flow is enabled between the flow channel and the needle's lumen by puncturing the elastic material with the at least one needle so that the exit orifice communicates with the flow channel lumen.