Abstract:
A bypass turbofan gas turbine engine is started by means of electric starter motor mounted directly about a downstream end or upstream of the low pressure spool of the engine. This causes air to be driven by a fan through a bypass duct around the engine casing. Closures close to substantially seal an outlet of the bypass duct, and the air is directed into a combustion chamber of the engine and through the turbines, causing the high pressure spool to pick up speed for starting.
Abstract:
A bypass turbofan gas turbine engine is started by an electric starter motor that is mounted directly about a downstream end or upstream of the low pressure spool of the engine. This causes air to be driven by a fan through a bypass duct around the engine casing. Closures close to substantially seal an outlet of the bypass duct, and the air is directed into a combustion chamber of the engine and through the turbines causing the high pressure spool to pick up speed for starting.
Abstract:
A bypass turbofan gas turbine engine (10) is started by means of electric starter motor (26) mounted directly about a downstream end or upstream of the low pressure spool (12) of the engine. This causes air to be driven by a fan (16) through a bypass duct (32) around the engine casing (28). Closures (34) close to substantially seal an outlet of the bypass duct (32), and the air is directed into a combustion chamber (24) of the engine and through the turbines (22,23), causing the high pressure spool (14) to pick up speed for starting.
Abstract:
The present invention provides for enhanced packet classification. With the present invention packets are classified using both positive and negative classifiers. That is, a packet is classified based on both (a) whether or not the packet does meet certain criteria and, b) whether or not the packet does not meet certain other criteria. Thus packets can be classified into data flows based upon both positive and negative criteria.
Abstract:
An electrically continuous, grounded conformal EMI protective shield and methods for applying same directly to the surfaces of a printed circuit board. The EMI shield adheres and conforms to the surface of the components and printed wiring board. The shield takes the shape of the covered surfaces while adding little to the dimensions of the surfaces. The EMI shield includes low viscosity, high adherence conductive and dielectric coatings each of which can be applied in one or more layers using conventional spray techniques. The conductive coating prevents substantially all electromagnetic emissions generated by the shielded components from emanating beyond the conformal coating. The dielectric coating is initially applied to selected locations of the printed circuit board so as to be interposed between the conductive coating and the printed circuit board, preventing the conductive coating from electrically contacting selected components and printed wiring board regions.
Abstract:
Volatile impregnated substrates, such as wicks and mats, that can be used in a dispensing device that uses a heat source or otherwise uses active means to promote the release of the volatile material from the substrate are disclosed. The preferred substrate has a structure including sand particles adhered together by a binder to form a network of pores and passages. The binder is selected from thermoset polymeric materials and mixtures thereof. A volatile material is disposed in the pores before the substrate is installed in the dispensing device. The impregnated substrate is positioned in the dispensing device on or near the heat source of the dispensing device. The heat source is activated thereby elevating the temperature of the substrate such that volatile material is released from the pores. In one embodiment, the sand particles comprise silica sand and the binder is a cured novolac resin.
Abstract:
A tracking system (10) for tracking movable assets (16) and a method for using the system are provided. The tracking system includes a monitoring device (22), a tracking information network (20), a data communication network (18), a tracker tag (12), and a tracking information server (14). The tracker tag operates independent from the asset and uses GPS technology. The tracking information server provides tracking information and related information to a subscriber. The method is for tracking the movable asset and providing tracking information to the subscriber. In one embodiment, the tracker tag is in communication with an Iridium satellite constellation (28) and the tracking information is displayed to the subscriber when the asset is substantially anywhere in the world. In another embodiment, the monitoring device is in communication with the Iridium satellite constellation and the tracking information is displayed to the subscriber when the subscriber is substantially anywhere in the world, preferably via the Internet (36).
Abstract:
An oil seal for a locking differential mechanism. The seal assembly includes a generally flat plate with a first generally circular oil seal adjacent an outer margin of the flat plate, a circular inner margin defining an opening in the flat plate with a second oil seal surrounding the inner margin, an oil outlet opening lying in an otherwise imperforate area between the first and second margins, and a cover for the flat plate with the cover and plate defining between them a passage for oil extending from a point radially outside the first seal to at least a point adjacent the oil outlet. The seal takes in a supply of oil from the differential sump and supplies it through the oil outlet to a multi-plate clutch which is activated only when the two axles undergo rotation relative to each other and thereby actuate a Gerotor type oil pump.
Abstract:
One section (1) of a rectangular frame is releasably secured to the remainder of the frame, in which a backing board (7) is located. When the device is fixed to a site location, the said one section (1) remains removable without damaging the site location, so as to allow a sheet (8) of artwork to be inserted into the frame in a direction parallel to the backing board (7). The artwork sheet (8) projects at least partly beyond the edge of the backing board (7) adjacent the removable section (1) so as to be grippable to facilitate removal of the artwork sheet (8).