Abstract:
Embodiments described herein provide for a method for obtaining location information regarding a wireless unit in a distributed antenna system (DAS). The method includes identifying a first time of arrival of a wireless signal in a time and frequency unit at a first active antenna unit (AAU). A second time of arrival of the wireless signal in the time and frequency unit at a second AAU is also identified. A location of a wireless unit transmitting the wireless signal is estimated based on a location of the first AAU, a location of the second AAU, and a difference between the first time of arrival and the second time of arrival. The location of the wireless unit and an indication that the location corresponds to the time and frequency unit is sent to a baseband unit or serving mobile location center (SMLC).
Abstract:
A distributed antenna system includes a host unit configured to receive downlink wireless network information from a radio access network interface and at least one antenna unit communicatively coupled to the host unit by at least one digital communication link. Host unit is configured to convert downlink wireless network information received from radio access network interface from first protocol layer to second protocol layer. Second protocol layer uses relevant bits more efficiently than first protocol layer. Host unit is configured to communicate downlink wireless network information to at least one antenna unit across at least one digital communication link. At least one antenna unit is configured to convert downlink wireless network information communicated from host unit from second protocol layer to downlink radio frequency signals. At least one antenna unit is configured to communicate downlink radio frequency signals wirelessly using at least one antenna.
Abstract:
A distributed antenna system includes a host unit configured to receive downlink wireless network information from a radio access network interface and at least one antenna unit communicatively coupled to the host unit by at least one digital communication link. Host unit is configured to convert downlink wireless network information received from radio access network interface from first protocol layer to second protocol layer. Second protocol layer uses relevant bits more efficiently than first protocol layer. Host unit is configured to communicate downlink wireless network information to at least one antenna unit across at least one digital communication link. At least one antenna unit is configured to convert downlink wireless network information communicated from host unit from second protocol layer to downlink radio frequency signals. At least one antenna unit is configured to communicate downlink radio frequency signals wirelessly using at least one antenna.
Abstract:
Embodiments described herein provide for a distributed antenna system including a host unit and an active antenna unit (AAU). The AAU is configured to wirelessly communicate with, and to receive uplink radio frequency (RF) signals from, one or more wireless devices. The AAU is further configured to sample the uplink RF signals to generate digitized RF data. The AAU includes an Ethernet interface for receiving Internet Protocol (IP) formatted data from an IP device coupled to the Ethernet interface. The AAU is configured to transport the digitized RF data and the IP formatted data over a transport signal to the host unit, the transport signal including a plurality of bits. The AAU is configured to adaptively adjust the number of bits that are allocated to the digitized RF data and the number of bits that are allocated to the IP formatted data.
Abstract:
Systems and methods for capacity management for a distributed antenna system are provided. In one embodiment, a distributed antenna system comprises: a host unit; a plurality of remote antenna units coupled to the host unit via a plurality of communication links, wherein the plurality of communication links transport a radio frequency (RF) carrier signal between the host unit and at least one wireless subscriber unit via the plurality of remote units; and at least one capacity processor, wherein the capacity processor alters at least a portion of the RF carrier signal such that the at least one wireless subscriber unit can utilize a bandwidth of the RF carrier signal that is less than a full available bandwidth of the RF carrier signal.