Abstract:
Base station antennas include an externally accessible active antenna module releasably coupled to a recessed segment that is over a chamber in the base station antenna and that is longitudinally and laterally extending along and across a rear of a base station antenna housing. The base station antenna housing has a passive antenna assembly that cooperates with the active antenna module.
Abstract:
Antennas include first and second radiating elements that are configured to operate in respective operating frequency bands. The first radiating element includes a first dipole arm that has a first conductive path and a second conductive path that is positioned behind the first conductive path. The first conductive path includes a plurality of first segments and the second conductive path includes a plurality of second segments, where a subset of the first segments overlap respective ones of second segments to form a plurality of pairs of overlapping first and second segments. At least some of the pairs of overlapping segments are configured so that the instantaneous direction of a first current formed on the first segment in response to RF radiation emitted by the second radiating element will be substantially opposite the instantaneous direction of a second current formed on the second segment in response to the RF radiation.
Abstract:
Base station antennas include at least one passive internal grid reflector with an array of low band radiating elements projecting forward of a front one of the at least one grid reflector. A mMIMO antenna array resides behind a back one of the at least one grid reflector and is configured to transmit signal through the grid reflector and out a front radome of the base station antenna.
Abstract:
A box dipole radiating element uses a compact quad arrangement of substantially coplanar radiating arms to support slant-polarized radiation, in response to differential-mode currents generated along four sides thereof and in response to common-mode currents, which may be generated in substantially the same plane as the differential-mode currents. A feed signal routing network is provided, which includes a feed signal routing substrate on portions of the radiating arms, first through fourth signal traces on a forward face of the substrate, and first through fourth ground plane segments on a rear face of the substrate. These first through fourth ground plane segments are capacitively coupled to the radiating arms. Each of the signal traces receives a corresponding feed signal, and spans a corresponding air gap between a pair of the radiating arms.
Abstract:
A base station antenna includes a first radio frequency ("RF") port; a second RF port; a first array of radiating elements that includes a first radiating element, the first radiating element including first and second radiators each having the first polarization direction, wherein the first radiator is coupled to the first RF port; a second array of radiating elements that includes a second radiating element, the second radiating element including a third radiator having the first polarization direction; and a first power divider having a first input that is coupled to the second RF port, and first and second outputs that are respectively coupled to the second and third radiators.
Abstract:
A base station antenna includes a column of radiating elements comprising first and second sets of radiating elements, each radiating element being configured to operate in a first frequency band that has first and second sub-bands. The second set of radiating elements is located above and/or below the first set of radiating elements. The antenna further includes a feeding assembly that is configured to feed first RF signals that are in the first sub-band and second RF signals that are in the second sub-band to the column of radiating elements, where the feeding assembly is configured to partially attenuate sub-components of the second RF signals that are fed to the second set of radiating elements more than sub-components of the first RF signals that are fed to the second set of radiating elements.
Abstract:
A patch antenna comprises a multilayer printed circuit board that includes a calibration network, an array of patch radiators and a feed network. In some embodiments, the multilayer printed circuit board includes a plurality of dielectric substrates, wherein the array of patch radiators is provided on a dielectric substrate different from the dielectric substrate on which the calibration network is provided, and the dielectric substrate provided with the array of patch radiators is provided above the dielectric substrate provided with the calibration network.
Abstract:
The present invention relates to a base station antenna, comprising: a plurality of first radiating elements that are arranged as a first vertically-extending array; a plurality of second radiating elements that are arranged as a second vertically-extending array, where the second radiating elements are staggered in the vertical direction with respect to the first radiating elements; wherein phase centers in an azimuth plane for first sub-arrays of the first radiating elements are substantially the same as phase centers in the azimuth plane for respective third sub-arrays of the second radiating elements, and wherein the first sub-arrays each have a first number of first radiating elements and the third sub-arrays each have a second number of second radiating elements, the first number being different than the second number. This can effectively improve the pattern of the base station antenna.
Abstract:
Apparatus include two or more radiating elements connected to a feed network of an antenna, and one or more dummy elements positioned between the two or more radiating elements. The dummy elements are not connected to the feed network of the antenna. Such an arrangement may result in reduced mutual coupling of the two or more radiating elements, and increased antenna performance.