Abstract:
A distributed antenna system includes a host unit configured to receive downlink wireless network information from a radio access network interface and at least one antenna unit communicatively coupled to the host unit by at least one digital communication link. Host unit is configured to convert downlink wireless network information received from radio access network interface from first protocol layer to second protocol layer. Second protocol layer uses relevant bits more efficiently than first protocol layer. Host unit is configured to communicate downlink wireless network information to at least one antenna unit across at least one digital communication link. At least one antenna unit is configured to convert downlink wireless network information communicated from host unit from second protocol layer to downlink radio frequency signals. At least one antenna unit is configured to communicate downlink radio frequency signals wirelessly using at least one antenna.
Title translation:SYSTEME UND VERFAHREN ZUR集成VON ASYNCHRONEN SIGNALEN在EINEM VERTEILTEN ANTENNENSYSTEM MIT DIREKTER DIGITALER SCHNITTSTELLE ZUR BASISSTATION
Abstract:
A signal interface unit in a radio system includes an external device interface configured to receive a downlink asynchronous radio carrier signal for a radio frequency carrier from an external device; a clock conversion unit communicatively coupled to the external device interface and configured to re-clock the downlink asynchronous radio carrier signal to a master clock of the radio system from the clock of the external device; and an antenna side interface configured to communicate at least one of the re-clocked downlink asynchronous radio carrier signal and a downlink digitized radio frequency signal based on the re-clocked downlink asynchronous radio carrier signal to an antenna unit.
Abstract:
A distributed antenna system (DAS) includes host that receives downstream signals corresponding to radio frequency (RF) channel and remote antenna units (RAUs) communicatively coupled to host. Host communicates downstream transport signal derived from downstream signals received at host to RAUs. Each RAU uses downstream transport signal to generate downstream RF signal for radiation from antenna associated with RAU. Downstream RF signal comprises a subset of plurality of downstream frequency bands. Each RAU receives upstream RF signal including respective RF channel. Each RAU communicates upstream transport signal derived from upstream RF signal to host. Host uses upstream transport signal to generate upstream signal including at least one upstream frequency band. Host analyzes attribute of downstream and upstream transport signals associated with RAUs, correlates analyzed attribute for each RAU with profile, and determines current capacity usage of RAUs based on correlation. Host dynamically allocates capacity amongst RAUs based on current capacity usage.
Abstract:
A signal interface unit for a distributed antenna system includes a channelized radio carrier interface configured to communicate an uplink channelized radio carrier for a radio frequency carrier to a channelized radio carrier base station interface; an antenna side interface configured to receive an uplink digitized radio frequency signal from the distributed antenna system communicatively coupled to the antenna side interface; and a signal conversion module communicatively coupled between the channelized radio carrier interface and the antenna side interface and configured to convert between the uplink digitized radio frequency signal and the uplink channelized radio carrier at least in part by adjusting at least one uplink attribute of the uplink digitized radio frequency signal received from the distributed antenna system to comply with requirements of the channelized radio carrier base station interface.