Abstract:
A dual interface separable insulated connector comprising a faraday cage molded over a bus bar for use in an electric power system and a method of manufacturing the same are provided. The faraday cage can be disposed within a semi-conductive shell. The configuration of the separable insulated connector can provide for easier bonding between the faraday cage and insulating material. Additionally, the configuration can eliminate or reduce the need to coat the bus bar with an adhesive agent and to smooth the metal bus bar to remove burrs, other irregularities, and sharp corners from the bar. Manufacturing the dual interface separable insulated connector can include molding a semi-conductive rubber faraday cage over a conductive bus bar, inserting the faraday cage into a shell, and injecting insulating material between the faraday cage and shell.
Abstract:
Medium voltage separable insulated connector system for power distribution systems and configured to make and break energized connections at rated voltage but in the absence of load current.
Abstract:
Removal of a conventional separable insulated connector from an electric power system often results in a shortened electric cable. An extender for a separable insulated connector enables the separable insulated connector to connect to a shortened cable. A conventional cable adapter is inserted into the extender, which includes a conductive connector for accepting the shortened cable and a conductive rod for carrying electric power from the shortened cable to the separable insulated connector. The extender also includes an inner semi-conductive layer that borders the conductive rod and compression connector, an outer semi-conductive layer, and a insulating layer between the two semi-conductive layers. The extender is inserted into a separable insulated connector, which is then connected to the electric power system.
Abstract:
A fuse test and ground device includes an insulated housing with a bore that extends from the front of the housing towards the rear of the housing. An electrical contact is disposed partially within the bore. A current interrupter, such as a fuse, is electrically connected between the contact and a testing ground lead. An eye, having it's surface insulated by the housing, can be attached to the housing and provide a connection point for manipulation of the device. A grounding bore extends from a second aperture into the housing and provides an electrical connection to the contact. A grounding plug can be connected to ground on one end and inserted into the grounding bore to create a permanent ground for the device. An annunciator is connected to the current interrupter such that the annunciator provides an indication when a current flows through the current interrupter.
Abstract:
An electrical connector for connecting to an electrical apparatus within a high power circuit includes an electrical contact and an enclosure. The electrical contact is configured to connect to a bushing of an electrical apparatus within a high power circuit. The electrical contact extends along a first direction from a coupling region. The enclosure extends from the coupling region in a second direction that is nonparallel to the first direction. The enclosure includes two or more electrical devices, with each electrical device being connected to the electrical contact within the coupling region and providing a current path from the electrical apparatus to at least one external coupling device within the high power circuit.
Abstract:
A device includes a first conductive member configured to be electrically coupled to a first component and a second conductive member configured to be electrically coupled to a second component. The second conductive member by a gap. A conductive connecting member is moveable to make an electrical connection between the first and second conductive members across the gap. A housing receives the first conductive member, the second conductive member, and the connecting member. The housing includes a insulating layer and a conductive layer. The movement of the connecting member to make the electrical connection is visible through at least a portion of the insulating layer and the conductive layer.
Abstract:
Separating connector assemblies of a separable connector system. The separable connector assemblies include one or more pairs of connectors configured to engage and disengage one another in electrical connection and disconnection operations, respectively. An operator can disengage the connectors by pushing the connectors together and then pulling the connectors apart. Pushing the connectors together shears interface adhesion between the connectors, making it easier for the operator to pull the connectors apart. One of the connectors can include a nose end having an undercut segment configured to not engage an interior surface of the other connector when the connectors are engaged. Limiting the surface area of the nose end that interfaces with the interior surface of the other connector reduces surface adhesion and a pressure drop when separating the connectors, making separation easier to perform.
Abstract:
Separating connector assemblies of a separable connector system. The separable connector assemblies include one or more pairs of connectors configured to engage and disengage one another in electrical connection and disconnection operations, respectively. An operator can disengage the connectors by pushing the connectors together and then pulling the connectors apart. Pushing the connectors together shears interface adhesion between the connectors, making it easier for the operator to pull the connectors apart. One of the connectors can include a nose end having an undercut segment configured to not engage an interior surface of the other connector when the connectors are engaged. Limiting the surface area of the nose end that interfaces with the interior surface of the other connector reduces surface adhesion and a pressure drop when separating the connectors, making separation easier to perform.
Abstract:
Separable connector assemblies include one or more pairs of connectors that engage and disengage one another in electrical connection and disconnection operations, respectively. An operator can disengage the connectors by pushing the connectors together and then pulling the connectors apart. Pushing the connectors together shears interface adhesion between the connectors, making it easier for the operator to pull the connectors apart. An indicator integral or coupled to one of the connectors can indicate whether the first and second connectors are in the pushed-in- position. A window in the other connector includes an opening, channel, and/or translucent or semi-translucent material through which the indicator may be seen. The window and/or one or more vents in a tubular member of one of the connectors can include a channel that provides an air path for ingress of air between the connectors, to thereby remove or reduce a vacuum or partial vacuum between the connectors.