Abstract:
A silicate glass that is tough and scratch resistant. The toughness is increased by minimizing the number of non-bridging oxygen atoms in the glass. In one embodiment, the silicate glass is an aluminoborosilicate glass in which −15 mol %≤(R2O+R′O−Al2O3−ZrO2)−B2O3≤4 mol %, where R is one of Li, Na, K, Rb, and Cs, and R′ is one of Mg, Ca, Sr, and Ba.
Abstract:
Compounds, compositions, articles, devices, and methods for the manufacture of light guide plates and back light units including such light guide plates made from glass. In some embodiments, light guide plates (LGPs) are provided that have similar or superior optical properties to light guide plates made from PMMA and that have exceptional mechanical properties such as rigidity, CTE and dimensional stability in high moisture conditions as compared to PMMA light guide plates.
Abstract:
Described herein are aluminoborosilicate glass compositions that are substantially alkali-free and exhibit desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs). The glass compositions can be formed into glass sheets by, for example, the float process. When used as substrates, the glass sheets exhibit dimensional stability during processing and damage resistance during cutting.
Abstract:
Alkali-doped boroaluminosilicate glasses are provided. The glasses include the network formers SiO2, B2O3, and Al2O3. The glass may, in some embodiments, have a Young's modulus of less than about 65 GPa and/or a coefficient of thermal expansion of less than about 40×10−7/° C. The glass may be used as a cover glass for electronic devices, a color filter substrate, a thin film transistor substrate, or an outer clad layer for a glass laminate.
Abstract:
Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs) and active matrix organic light emitting diode displays (AMOLEDs). In accordance with certain of its aspects, the glasses possess good dimensional stability as a function of temperature.
Abstract:
Computer-implemented methods and apparatus are provided for predicting/estimating (i) a non-equilibrium viscosity for at least one given time point in a given temperature profile for a given glass composition, (ii) at least one temperature profile that will provide a given non-equilibrium viscosity for a given glass composition, or (iii) at least one glass composition that will provide a given non-equilibrium viscosity for a given time point in a given temperature profile. The methods and apparatus can be used to predict/estimate stress relaxation in a glass article during forming as well as compaction, stress relaxation, and/or thermal sag or thermal creep of a glass article when the article is subjected to one or more post-forming thermal treatments.
Abstract:
A glass element having a thickness from 25 μm to 125 μm, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress σI of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
Abstract:
Substantially alkali free glasses are disclosed with can be used to produce substrates for flat panel display devices, e.g., active-matrix liquid crystal displays (AMLCDs). The glasses have high annealing temperatures and etch rates. Methods for producing substantially alkali free glasses using a downdraw process (e.g., a fusion process) are also disclosed.
Abstract:
A glass element having a thickness from 25 μm to 125 μm, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress σI of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
Abstract:
A glass element having a thickness from 25 μm to 125 μm, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress σI of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that when the glass element is bent to a target bend radius of from 1 mm to 20 mm, with the center of curvature on the side of the second primary surface so as to induce a bending stress σB at the first primary surface, σI+σB
Abstract translation:一种玻璃元件,其厚度为25μm至125μm,第一主表面,第二主表面和从第一主表面延伸到第一深度的压应力区域,该区域由压缩应力和 在第一主表面处至少约100MPa。 此外,玻璃元件具有应力分布,使得当玻璃元件弯曲到目标弯曲半径为1mm至20mm时,曲率中心在第二主表面侧以便引起弯曲应力 &sgr; B在第一个主表面,&sgr; I +&sgr; B <0。 此外,当玻璃元件的第一主表面装载有直径为1.5mm的碳化钨球时,玻璃元件具有≥1.5kgf的耐刺穿性。