Abstract:
Chemically strengthened glass articles having at least one deep compressive layer extending from a surface of the article to a depth of compression DOC of at least about 125 μm within the glass article. The compressive stress profile includes a single linear segment or portion extending from the surface to the depth of compression DOC. Alternatively, the compressive stress profile may include an additional portion extending from the surface to a relatively shallow depth and the linear portion extending from the shallow depth to the depth of compression.
Abstract:
Embodiments of a layered-substrate comprising a substrate and a layer disposed thereon, wherein the layered-substrate is able to withstand fracture when assembled with a device that is dropped from a height of at least 100 cm onto a drop surface, are disclosed. The layered-substrate may exhibit a hardness of at least about 10 GPa or at least about 20 GPa. The substrate may include an amorphous substrate or a crystalline substrate. Examples of amorphous substrates include glass, which is optionally chemically strengthened. Examples of crystalline substrates include single crystal substrates (e.g. sapphire) and glass ceramics. Articles and/or devices including such layered-substrate and methods for making such devices are also disclosed.
Abstract:
Embodiments are directed to strengthened glass articles comprising a thickness t≦1 mm (1000 μm), an inner region under a central tension CT (in MPa), and at least one compressive stress layer adjacent the inner region and extending within the strengthened glass article from a surface of the strengthened glass article to a depth of layer DOL (in μm), wherein the strengthened glass article is under a compressive stress at the surface CSs (in MPa), wherein the strengthened glass article is an alkali aluminosilicate glass article comprising 0-5 mol % Li2O, and at least 3 mol % Al2O3, and wherein the DOL≧70 μm, and a CSs/DOL ratio≧2.5 MPa/μm.
Abstract:
Glass-based articles comprise stress profiles providing improved drop performance. A glass-based substrate comprises: a glass transition temperature (Tg), a liquid fragility index (m), and fictive temperature (Tf), wherein Tg is less than or equal to 650° C., a value of Tf minus Tg is greater than or equal to −30° C., and m is greater than or equal to 25. A stress relaxation rate is greater than or equal to 10%, or 20% or more. The articles can comprise a lithium-based aluminosilicate composition and a fracture toughness that is greater than or equal to 0.75 MPa*m0.5. The stress profiles comprise: a spike region extending from the first surface to a knee; and a tail region extending from the knee to a center of the glass-based article, the tail region comprising: a negative curvature region wherein a second derivative of stress as a function of depth is negative; a depth of compression (DOC) that is greater than or equal to 0.22 t, and a parabolic region originating at the DOC and extending to the center of the glass-based article.
Abstract:
Glass-based article including a first surface and a second surface opposing the first surface defining a thickness (t), and a stress profile are disclosed having a thickness (t) of about 3 millimeters or less, and wherein all points of the stress profile between a thickness range from about 0·t up to 0.3·t and from greater than 0.7·t, comprise a tangent with a slope that is less than about −0.1 MPa/micrometers or greater than about 0.1 MPa/micrometers. Also disclosed are glass-based articles having a thickness (t) in a range of 0.1 mm and 2 mm; and wherein at least one point of the stress profile in a first thickness range from about 0·t up to 0.020·t and greater than 0.98·t comprises a tangent with a slope of from about −200 MPa/micrometer to about −25 MPa/micrometer or about 25 MPa/micrometer to about 200 MPa/micrometer, and wherein all points of the stress profile in a second thickness range from about 0.035·t and less than 0.965·t comprise a tangent with a slope of from about −15 MPa/micrometer to about 15 MPa/micrometer.
Abstract:
Glass-based articles are disclosed having a thickness in a range of from about 0.2 mm to about 4.0 mm, a first compressive stress layer extending from a first surface of the glass-based article to a first depth of compression that is in a range of from about 5% to about 20% of the thickness, a second compressive stress layer extending from a second surface of the glass-based article to a second depth of compression that is in a range of from about 5% to about 20% of the thickness, wherein the second surface is opposite the first surface, and a central region extending from the first depth of compression to the second depth of compression and having a maximum tensile stress in a range of from about 0.5 MPa to about 20 MPa. Electronic devices comprising the glass-based articles and methods of making glass-based articles are also disclosed.
Abstract:
Glass-based articles comprise stress profiles providing improved drop performance. A glass-based substrate comprises: a glass transition temperature (Tg), a liquid fragility index (m), and fictive temperature (Tf), wherein Tg is less than or equal to 650° C., a value of Tf minus Tg is greater than or equal to −30° C., and m is greater than or equal to 25. A stress relaxation rate is greater than or equal to 10%, or 20% or more. The articles can comprise a lithium-based aluminosilicate composition and a fracture toughness that is greater than or equal to 0.75 MPa*m0.5. The stress profiles comprise: a spike region extending from the first surface to a knee; and a tail region extending from the knee to a center of the glass-based article, the tail region comprising: a negative curvature region wherein a second derivative of stress as a function of depth is negative; a depth of compression (DOC) that is greater than or equal to 0.22 t, and a parabolic region originating at the DOC and extending to the center of the glass-based article.
Abstract:
Glass-based articles comprise stress profiles providing improved drop performance. A glass-based substrate comprises: a glass transition temperature (Tg), a liquid fragility index (m), and fictive temperature (Tf), wherein Tg is less than or equal to 650° C., a value of Tf minus Tg is greater than or equal to −30° C., and m is greater than or equal to 25. A stress relaxation rate is greater than or equal to 10%, or 20% or more. The articles can comprise a lithium-based aluminosilicate composition and a fracture toughness that is greater than or equal to 0.75 MPa*m0.5. The stress profiles comprise: a spike region extending from the first surface to a knee; and a tail region extending from the knee to a center of the glass-based article, the tail region comprising: a negative curvature region wherein a second derivative of stress as a function of depth is negative; a depth of compression (DOC) that is greater than or equal to 0.22t, and a parabolic region originating at the DOC and extending to the center of the glass-based article.
Abstract:
Glass-based articles having defined stress profiles and methods for manufacturing such glass-based articles are provided. A non-limiting glass-based article comprises an outer region extending from the surface to a depth of compression, wherein the outer region is under a neutral stress or a first compressive stress, a core region under a second compressive stress, the second compressive stress defining a compression peak having a maximum compression value and a maximum width at zero stress in a range of from about 1 micrometer to about 200 micrometers, and an intermediate region disposed between the surface and the core region, wherein the intermediate region is under a tensile stress.