Abstract:
The QD LED module (10) disclosed herein includes a support assembly (40), a circuit board (20), an LED (30) operably supported by the circuit board, wherein the LED emits blue light (36G). The QD LED module also has a QD structure (60) supported by the support assembly and axially spaced apart from the LED surface. The QD structure has an active area (AR) that includes a first region (R1) of QD material and a second region (R2) that has no QD material. A first portion of the blue light passes through the first region and is converted to red light (36R) and green light (36G). A second portion of the blue light passes through the second region. The QD material has a CIE color point that is shifted toward the yellow portion of the color space.
Abstract:
Assemblies, optical connectors, and methods for bonding optical fibers to a substrate using a laser beam are disclosed. In one embodiment, a method of bonding an optical fiber to a substrate includes directing a laser beam into the optical fiber disposed on a surface of the substrate, wherein the optical fiber has a curved surface and the curved surface of the optical fiber focuses the laser beam to a diameter that is smaller than a diameter of the laser beam as it enters the optical fiber. The method further includes melting, using the laser beam, a material of the substrate at a bond area between the optical fiber and the surface of the substrate such that the optical fiber is bonded to the surface of the substrate.
Abstract:
Disclosed herein are methods for making a sealed device (200), the methods comprising positioning a sealing layer comprising at least one metal between a first glass substrate (201a) and a second substrate (201b) to form a sealing interface; and directing a laser beam operating at a predetermined wavelength onto the sealing interface to form at least one seal (207) between the first and second substrates and to convert the at least one metal to metal nanoparticles. Sealed devices having a seal comprising metal nanoparticles having a particles size of less than about 50 nm are also disclosed herein, as well as display devices comprising such sealed devices.
Abstract:
A laser weldable device housing substrate, device housing and related method are provided. The substrate includes a first surface, a second surface opposite the first surface, and a thin inorganic particle layer supported by the first surface. The inorganic particle layer includes a plurality of particles arranged in a layer on the first surface. The particles have an average diameter of less than or equal to 1.0 μm, and the inorganic particle layer has an average thickness of less than or equal to 5 μm.
Abstract:
Disclosed herein are methods for forming light-transmitting articles comprising depositing a layer comprising a second material on a substrate comprising a first material, and forming a patterned surface on the second material. The first and second materials can have different glass transition temperatures Tg and/or refractive indices n. Additional layers comprising a third material can also be formed over the patterned surface, the third material having a glass transition temperature Tg and refractive index n that may be the same or different from those of the first and second material. Light-transmitting articles formed by such methods, as well as display devices comprising such light-transmitting articles are also disclosed herein.
Abstract:
Embodiments are directed to glass frits containing phosphors that can be used in LED lighting devices and for methods associated therewith for making the phosphor containing glass frit and their use in glass articles, for example, LED devices.
Abstract:
A method for inhibiting oxygen and moisture degradation of a device and the resulting device are described herein. To inhibit the oxygen and moisture degradation of the device, a low liquidus temperature (LLT) material which typically has a low low liquidus temperature (or in specific embodiments a low glass transition temperature) is used to form a barrier layer on the device. The LLT material can be, for example, tin fluorophosphate glass, chalcogenide glass, tellurite glass and borate glass. The LLT material can be deposited onto the device by, for example, sputtering, evaporation, laser-ablation, spraying, pouring, frit-deposition, vapor-deposition, dip-coating, painting or rolling, spin-coating or any combination thereof. Defects in the LLT material from the deposition step can be removed by a consolidation step (heat treatment), to produce a pore-free, gas and moisture impenetrable protective coating on the device. Although many of the deposition methods are possible with common glasses (i.e. high melting temperature glasses like borate silicate, silica, etc.), the consolidation step is only practical with the LLT material where the consolidation temperature is sufficiently low so as to not damage the inner layers in the device.
Abstract:
A method of bonding glass to metal foil comprising contacting a glass substrate and a metal foil to create an interface therebetween; and directing a laser beam operating at a predetermined wavelength onto the interface to form an interfacial weld between the glass substrate and the metal foil, wherein the metal foil has a thickness greater than or equal to 5 μm and less than or equal to 200 μm, and wherein the laser beam comprises a pulsed laser having a pulse width greater than or equal to 1 nanosecond and less than or equal to 200 nanoseconds. In other embodiments, the metal foil has a thickness greater than 100 nm and less than or equal to 10 mm.
Abstract:
Disclosed herein are sealed devices comprising a first substrate, a second substrate, an inorganic film between the first and second substrates, and at least one weld region comprising a bond between the first and second substrates. The weld region can comprise a chemical composition different from that of the inorganic film and the first or second substrates. The sealed devices may further comprise a stress region encompassing at least the weld region, in which a portion of the device is under a greater stress than the remaining portion of the device. Also disclosed herein are display and electronic components comprising such sealed devices.
Abstract:
A method of making a glass article, for example a glass light guide plate comprising at least one structured surface including a plurality of channels and peaks. The glass article may be suitable for enabling one dimensional dimming when used in a backlight unit for use as an illuminator for liquid crystal display devices.