Abstract:
A process using a three-piece mold for making a three-dimensionally shaped glass article having a flat area and a curved/bend area is disclosed. The process includes placing a glass sheet on a mold having a shaping surface with a desired surface profile for the shaped glass article including a flat area and a bend area, moving a flat area plunger toward the glass sheet to compress the glass sheet, heating a portion of the glass sheet corresponding to an area above the bend area of the mold to a temperature above a forming temperature, and moving a bend area plunger toward the heated glass sheet to compress the heated glass sheet. A temperature of the glass sheet in the area above the bend area of the mold is higher than a temperature of the glass sheet in the area above the flat area of the mold when compressing the heated glass sheet with the bend area plunger.
Abstract:
A process using a three-piece mold for making a three-dimensionally shaped glass article having a flat area and a curved/bend area is disclosed. The process includes placing a glass sheet on a mold having a shaping surface with a desired surface profile for the shaped glass article including a flat area and a bend area, moving a flat area plunger toward the glass sheet to compress the glass sheet, heating a portion of the glass sheet corresponding to an area above the bend area of the mold to a temperature above a forming temperature, and moving a bend area plunger toward the heated glass sheet to compress the heated glass sheet. A temperature of the glass sheet in the area above the bend area of the mold is higher than a temperature of the glass sheet in the area above the flat area of the mold when compressing the heated glass sheet with the bend area plunger.
Abstract:
Non-contact, gas-ejecting bearings (3) are provided for conveying flexible glass sheets (13), such as LCD substrates, at high conveyance speeds, e.g., speeds of 40 meters/minute and above, e.g., 60 meters/minute. Gas is provided to the bearing's orifices (22) from a plenum which operates at a pressure Pplenum and the bearings have a calculated static pressure Pmidpoint at the midpoints (27) between the bearing's centermost orifice (26) and each of its nearest neighbors (28) in a horizontal direction which satisfies the relationship Pmidpoint/Pplenum≧0.05. The bearings (3) can reduce the time-averaged, peak-to-peak variation in the spacing between a LCD substrate (13) traveling at, for example, 60 meters/minute and the face (20) of the bearing (3) to less than 500 microns, thus reducing the chances that the substrate (13) will hit and be damaged by the bearing (3).
Abstract:
Apparatus and methods for processing a glass sheet are disclosed. A first plurality of fluid outlets are directed at a first major surface of a glass sheet and a second plurality of fluid nozzles are directed at a second major surface of the glass sheet. The first plurality of fluid nozzles and second plurality of fluid nozzles are spaced apart at an adjustable gap, and the gap can be increased or decreased during processing the glass sheet. The apparatus and methods can be used to reduce bow in a glass sheet.
Abstract:
According to one embodiment, a method of manufacturing a glass article having a three-dimensional shape includes heating a glass article blank to a temperature above a setting temperature and coupling the glass article blank to an open-faced mold. The open-faced mold includes a molding region that has a three-dimensional shape that generally corresponds to the shape of the glass article and has an anisothermal temperature profile within the molding region. The method further includes maintaining an anisothermal temperature profile along the glass article blank and cooling the glass article blank while the glass article blank is coupled to the molding region of the open-faced mold to set the shape of the glass article.
Abstract:
Non-contact, gas-ejecting bearings (3) are provided for conveying flexible glass sheets (13), such as LCD substrates, at high conveyance speeds, e.g., speeds of 40 meters/minute and above, e.g., 60 meters/minute. Gas is provided to the bearing's orifices (22) from a plenum which operates at a pressure Pplenum and the bearings have a calculated static pressure Pmidpoint at the midpoints (27) between the bearing's centermost orifice (26) and each of its nearest neighbors (28) in a horizontal direction which satisfies the relationship Pmidpoint/Pplenum≧0.05. The bearings (3) can reduce the time-averaged, peak-to-peak variation in the spacing between a LCD substrate (13) traveling at, for example, 60 meters/minute and the face (20) of the bearing (3) to less than 500 microns, thus reducing the chances that the substrate (13) will hit and be damaged by the bearing (3).