Abstract:
The present invention generally relates to methods for increasing the lifetime of MEMS devices by reducing the number of movements of a switching element in the MEMS device. Rather than returning to a ground state between cycles, the switching element can remain in the same state if both cycles necessitate the same capacitance. For example, if in both a first and second cycle, the switching element of the MEMS device is in a state of high capacitance the switching element can remain in place between the first and second cycle rather than move to the ground state. Even if the polarity of the capacitance is different in successive cycles, the switching element can remain in place and the polarity can be switched. Because the switching element remains in place between cycles, the switching element, while having the same finite number of movements, should have a longer lifetime.
Abstract:
The present invention generally relates to an architecture for isolating an RF MEMS device from a substrate and driving circuit, series and shunt DVC die architectures, and smaller MEMS arrays for high frequency communications. The semiconductor device has one or more cells with a plurality of MEMS devices therein. The MEMS device operates by applying an electrical bias to either a pull-up electrode or a pull-down electrode to move a switching element of the MEMS device between a first position spaced a first distance from an RF electrode and a second position spaced a second distance different than the first distance from the RF electrode. The pull-up and/or pull-off electrode may be coupled to a resistor to isolate the MEMS device from the substrate.
Abstract:
The present invention generally relates to methods for increasing the lifetime of MEMS devices by reducing the landing velocity on switching by introducing gas into the cavity surrounding the switching element of the MEMS device. The gas is introduced using ion implantation into a cavity close to the cavity housing the switching element and connected to that cavity by a channel through which the gas can flow from one cavity to the other. The implantation energy is chosen to implant many of the atoms close to the inside roof and floor of the cavity so that on annealing those atoms diffuse into the cavity. The gas provides gas damping which reduces the kinetic energy of the switching MEMS device which then should have a longer lifetime.
Abstract:
The present invention generally relates to RF MEMS devices that are capable of hot switching. The RF MEMS devices, by utilizing one or more spring mechanisms, are capable of hot switching. In certain embodiments, two or more sets of springs may be used that become engaged at specific points in the displacement of the cantilever of the MEMS device. The springs allow for a significant increase in the release voltage for a given pull in landing voltage.
Abstract:
The present disclosure generally relates to the design of a MEMS ohmic switch which provides for a low-impact landing of the MEMS device movable plate on the RF contact and a high restoring force for breaking the contacts to improve the lifetime of the switch. The switch has at least one contact electrode disposed off-center of the switch device and also has a secondary landing post disposed near the center of the switch device. The secondary landing post extends to a greater height above the substrate as compared to the RF contact of the contact electrode so that the movable plate contacts the secondary landing post first and then gently lands on the RF contact. Upon release, the movable plate will disengage from the RF contact prior to disengaging from the secondary landing post and have a longer lifetime due to the high restoring force.
Abstract:
A MEMS switch contains an RF electrode 102, pull-down electrodes 104 and anchor electrodes 108 located on a substrate 101. A plurality of islands 226 are provided in the pull-down electrode and electrically isolated therefrom. On top of the RF electrode is the RF contact 206 to which the MEMS-bridge 212, 214 forms an ohmic contact in the pulled-down state. The pull-down electrodes 104 are covered with a dielectric layer 202 to avoid a short-circuit between the bridge and the pull-down electrode. Contact stoppers 224 are disposed on the dielectric layer 202 at locations corresponding to the islands 226, and the resulting gap between the bridge and the dielectric layer in the pulled-down state reduces dielectric charging. In alternative embodiments, the contact stoppers are provide within the dielectric layer 202 or disposed on the islands themselves and under the dielectric layer. The switch provides good controllability of the contact resistance of MEMS switches over a wide voltage operating range.
Abstract:
In a MEMS device, the manner in which the membrane lands over the RF electrode can affect device performance. Bumps or stoppers placed over the RF electrode can be used to control the landing of the membrane and thus, the capacitance of the MEMS device. The shape and location of the bumps or stoppers can be tailored to ensure proper landing of the membrane, even when over-voltage is applied. Additionally, bumps or stoppers may be applied on the membrane itself to control the landing of the membrane on the roof or top electrode of the MEMS device.
Abstract:
The present invention generally relates to a variable capacitor for RF and microwave applications. The variable capacitor includes a bond pad that has a plurality of cells electrically coupled thereto. Each of the plurality of cells has a plurality of MEMS devices therein. The MEMS devices share a common RF electrode, one or more ground electrodes and one or more control electrodes. The RF electrode, ground electrodes and control electrodes are all arranged parallel to each other within the cells. The RF electrode is electrically connected to the one or more bond pads using a different level of electrical routing metal.