Abstract:
A laser diode is disclosed. The laser diode generally has a support frame having a large-area coupling part and at least two pins on both ends, respectively, wherein one pin is integrally formed with the support frame. A laser diode chip and a photo-diode chip are attached to the large-area coupling part individually, and connected to other pins via two bonding wires, respectively. A transparent adhesive is formed on the photo-diode chip. The aforesaid components are integrated into a unity by a cover that has an opening on the top. Accordingly, the photo-diode chip can receive the laser light for utilizing the light feedback by an external circuit. Besides, the photo-diode chip and the laser diode chip are attached to the support frame directly so the laser diode offers good heat dissipation capability, extended lifetime, and increased reliability.
Abstract:
The invention relates to an improved structure of a thermopile sensor, which is to employ a membrane to cover a substrate that has a cavity. Besides, a plurality of thermoelectric elements is formed on the membrane extending outwards from the central side of the membrane and is composed of two different materials connected in series. The material of the element can be a composite of metal material and semiconductor material, and an insulation layer partitions the two materials; therefore, the two materials are connected in series through a contact hole. In addition, the contact hole formed at the central side of the membrane is called hot junction, whereas the contact hole formed at the side of the substrate is called cold junction. Moreover, to enhance the sensing performance of the thermopile sensor, a heat-conducting layer is formed at the center of the membrane, and after the heat-conducting layer is covered with another insulation layer, an absorption film is formed. The invention changes the temperature difference distribution by adding in a heat-conducting layer so as to enhance the sensing performance.
Abstract:
A method for forming thermal isolation for a micro thermopile device comprises steps of forming a narrow etching window on the membrane and forming a plurality of micro connection structures each crossing the narrow etching window and connecting the edge portion of the membrane on both sides of the narrow etching window, and etching the silicon substrate through the narrow etching window to form a pit between the silicon substrate and the membrane, whereby the membrane becomes a floating membrane and has thermal isolation with the silicon substrate. By this method, the area of the floating membrane is increased and the strain of the floating membrane is reduced.