Abstract:
Embodiments are directed to bis- and poly-phosphaguanidine compounds, and the metal-ligand complexes formed therefrom, wherein the metal complexes can be used as procatalysts in polyolefin polymerization. Formulas (I) (II) and (III).
Abstract:
An olefin polymerization catalyst system includes a procatalyst component chosen from metal-ligand complexes of Formula (I): In Formula (I), each X is independently a monodentate or polydentate ligand that is neutral, monoanionic, or dianionic; the metal-ligand complex of Formula (I) is overall neutral; each Y 1 -Y 4 and Y 7 -Y 10 independently is selected from C or N such that six membered diaza (N 2 ) or triaza (N 3 ) rings are formed; wherein each R 1 and R 10 independently are chosen from (C 1 -C 40 ) hydrocarbyl, substituted (C 1 -C 40 ) hydrocarbyl, (C 1 -C 40 ) heterohydrocarbyl, and substituted (C 1 -C 40 ) heterohydrocarbyl or is absent; each R 2 , R 3 , R 4 , R 7 , R 8 , and R 9 is chosen from hydrogen; (C 1 -C 40 ) hydrocarbyl; substituted (C 1 -C 40 ) hydrocarbyl; (C 1 -C 40 ) heterohydrocarbyl; substituted (C 1 -C 40 ) heterohydrocarbyl; halogen, nitro (NO 2 ) or is absent; each R 5 and R 6 independently is chosen from (C 1 -C 40 ) hydrocarbyl, substituted (C 1 -C 40 ) hydrocarbyl, (C 1 -C 40 ) heterohydrocarbyl, and substituted (C 1 -C 40 ) heterohydrocarbyl.
Abstract:
Embodiments of this disclosure include polymerization processes that include contacting propylene and/or one or more (C4-C12)α-olefins in a reactor including a catalyst system. The catalyst system comprises a metal-ligand complex according to formula (I).
Abstract:
Embodiments are directed to catalyst systems comprising: a procatalyst; and a co-catalyst dissolved in a non-halogenated aprotic hydrocarbon solvent, the co-catalyst comprising: a non-coordinating borate dianion having the formula: (III) and two cations, each cation being independently chosen from a cation according to formula (I) or formula (II).
Abstract:
The present disclosure relates to a catalyst system for use in forming a multi-block copolymer, said copolymer containing therein two or more segments or blocks differing in chemical or physical properties, a polymerization process using the same, and the resulting polymers, wherein the composition comprises the admixture or reaction product resulting from combining: (A) a first olefin polymerization procatalyst, (B) a second olefin polymerization procatalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by procatalyst (A) under equivalent polymerization conditions, (C) an activator, and (D) a chain shuttling agent.
Abstract:
Provided is a non-cyclopentadienyl-based chromium-ligand complex, preferably a chromium-ligand complex of formula (J): LCr(R A ) m (D) k (J), wherein L is a non-Cp monoanionic ligand; Cr (chromium) is in a formal oxidation state of +3 or +2; when Cr formally is Cr +3 , either m is 1 and R A is hydrocarbylene (a hydrocarbylene chromium-ligand complex of formula (J)) or m is 2 and each R A independently is hydrocarbyl (a dihydrocarbyl chromium-ligand complex of formula (J)), wherein each hydrocarbyl or hydrocarbylene of R A independently is unsubstituted or substituted by from 1 to 5 R AS ; each R AS independently is a neutral aprotic heteroalkyl, neutral aprotic heterocycloalkyl, neutral aprotic heteroaryl, or neutral aprotic aryl; when Cr formally is Cr +2 , m is 1 and R A is hydrocarbyl (a hydrocarbyl chromium-ligand complex of formula (J)); k is an integer of 0 or 1; D is absent when k is 0 or D is a neutral ligand when k is 1; wherein the chromium-ligand complex of formula (J) is overall neutral and lacks a cyclopentadienyl-based (Cp-based) moiety. Also provided is a chromium catalyst comprising or prepared from the complex. Also provided is a process of making the catalyst and a process employing the chromium catalyst for polymerizing the olefin monomer, especially a straight chain 1-alkene, to prepare the polyolefin, especially a partially chain-straightened poly( 1-alkene) or olefin block copolymer. Further provided is the partially chain- straightened poly( 1-alkene) or olefin block copolymer prepared thereby. Also provided is a high throughput workflow.
Abstract:
Olefin polymerization catalyst systems are provided that include a procatalyst component having a metal-ligand complex of Formula (I): [formula] (I) where each X is a neutral, monoanionic, or dianionic, monodentate or polydentate ligand such that the complex of Formula (I) is neutral; each R1 and R10 is a (C6-C40)aryl, substituted (C6-C40)aryl, (C3-C40)heteroaryl, or substituted (C3-C40)heteroaryl; each R2, R3, R4, R7, R8, and R9 is a hydrogen; (C1-C40)hydrocarbyl; substituted (C1-C40)hydrocarbyl; (C1-C40)heterohydrocarbyl; substituted (C1-C40)heterohydrocarbyl; halogen; or nitro (NO2) group; and each R5 and R6 is a (C1-C 40 )alkyl; substituted (C1-C40)alkyl; or [(Si)1-(C+Si)40] substituted organosilyl. Additionally, olefin-based polymers and processes for polymerizing one or more olefin-based polymers in the presence of the olefin polymerization catalyst systems are also provided.