Abstract:
In one instance, the present disclosure describes a method for preparing a carbonaceous article comprising: providing a crosslinked polyolefin fabricated article; stabilizing the crosslinked polyolefin fabricated article by air oxidation to provide a stabilized fabricated article; treating with a boron-containing liquid (BCL) during or intermediate to at least one of the preceding steps; and carbonizing the stabilized fabricated article. In one instance the present disclosure describes a method for preparing a stabilized article.
Abstract:
Disclosed here are processes for preparing carbonized polymers (preferably carbon fibers), comprising sulfonating a polymer with a sulfonating agent that comprises SO 3 dissolved in a solvent to form a sulfonated polymer; treating the sulfonated polymer with a heated solvent, wherein the temperature of the solvent is at least 95 °C; and carbonizing the resulting product by heating it to a temperature of 500-3000 °C. Carbon fibers made according to these methods are also disclosed herein.
Abstract:
Disclosed herein are processes for preparing carbon fibers, comprising: sulfonating a polymer fiber with a sulfonating agent that is fuming sulfuric acid, sulfuric acid, chlorosulfonic acid, or a combination thereof; treating the sulfonated polymer with a heated solvent, wherein the temperature of the heated solvent is at least 95 ℃; and carbonizing the resulting product by heating it to a temperature of 500-3000 ℃. Carbon fibers prepared according to these methods are also disclosed herein.
Abstract:
The present disclosure relates to a capped dual-headed organoaluminum composition having the formula (I) and processes to prepare the same. In at least one aspect, the capped dual-headed organoaluminum compositions can be used in olefin polymerization.
Abstract:
A method for preparing a carbonized article comprising: (a) providing a polyolefin resin; (b) forming a fabricated article from the polyolefin resin; (c) crosslinking the fabricated article; (d) stabilizing the fabricated article in a boron-containing oxidizing environment (BOE); and (e) carbonizing the fabricated article. The present disclosure further describes a method for preparing a stabilized article.
Abstract:
The present disclosure describes a method for preparing a carbonized article comprising providing a fabricated polyolefin article; crosslinking the fabricated article with a boron-containing species (BCS); stabilizing the fabricated article by air oxidation; and carbonizing the fabricated article. The present disclosure further describes preparing a stabilized article.
Abstract:
A process includes treating a stabilized polyolefin fiber with a boron source followed by heating the fiber to a temperature 1000 degrees Celsius or higher in an inert atmosphere so as to convert the stabilized polyolefin fiber in to a carbon fiber.
Abstract:
A process for the telomerization of butadiene comprises reacting 1,3-butadiene and an alkanol, in the presence of a catalyst promoter and an alkoxydimerization catalyst comprising a Group VIII transition metal and a triarylphosphine ligand, which includes one phenyl that is mono-ortho-alkoxy substituted and at least one other phenyl including at least one substituent that withdraws electrons from the phosphorus atom. The product includes an alkoxy-substituted octadiene, which may then be used to produce 1-octene. The catalyst shows improved stability, activity and selectivity toward the alkoxy-substituted octadiene.
Abstract:
Disclosed herein are processes for preparing carbon fibers, comprising: sulfonating a polymer fiber with a sulfonating agent that is fuming sulfuric acid, sulfuric acid, chlorosulfonic acid, or a combination thereof; treating the sulfonated polymer with a heated solvent, wherein the temperature of the heated solvent is at least 95° C.; and carbonizing the resulting product by heating it to a temperature of 501-3000° C. Carbon fibers prepared according to these methods are also disclosed herein.