Abstract:
A generator control device controls a generator that is driven by an engine to charge a battery and supply electric power to electric loads. In the generator control device the following steps are carried out: calculating a required electric power; calculating a difference rate that is a difference in an amount of a hazardous gas component of engine exhaust gas between a first case in which the generator generates the required electric power and a second case in which the generator does not generate an electric power divided by the electric power and controlling the generator to generate the required electric power if the difference is equal to or smaller than a first reference value.
Abstract:
In an engine exhaust catalyst warm-up control, an ignition timing is delayed than normal first to raise the catalyst temperature, and then a fuel injection amount is dithered to increase and decrease alternately from a normal amount until the catalyst temperature reaches the catalyst activation completion temperature. In place of the ignition delay control, afterburning control may be employed in which fuel cut for a cylinder and fuel increase for the other cylinders are executed. Further, the catalyst warm-up control may be performed by controlling a supercharging operation and an exhaust gas recirculation operation cooperatively.
Abstract:
An exhaust re-circulation control device for gasoline engines is provided, which realizes efficient reduction of NOx in the low-temperature idling ranges before the catalytic converter is activated while preventing deterioration of driveability and engine stalling. Normally, an exhaust re-circulation control device comprises a re-circulation passage which re-circulates a portion of exhaust gas from an engine to an intake system and an exhaust re-circulation valve which opens and closes the re-circulation passage. Also, the engine has a bypass passage which controls idling rpm and an idling rpm control valve. In the engine, the low-temperature idling range before the catalytic converter is activated is detected exhaust re-circulation ratio is obtained and based on a target idling speed during that time to prevent deterioration of driveability and engine stalling and to efficiently reduce NOx emissions, even when the catalytic converter is not active.
Abstract:
Internal combustion engine control apparatus determines activation status of the O.sub.2 sensor and feasibility of feedback control. If the O.sub.2 sensor is activated and the feedback control is feasible, the apparatus computes a corrected fuel injection duration TAU based on feedback control using detected O.sub.2 concentration. For EGR control, the apparatus selects one of the two maps to retrieve EGR valve opening data based on the feasibility of feedback control, thus achieving an EGR flow in accordance with the selected air-fuel ratio control mode. The combination of the air-fuel ratio control and the EGR control achieves reduction of harmful exhaust gas components and stabilization of engine operation during an initial period after the start of engine operation.
Abstract:
In a mechanical type EGR apparatus, an EGR valve receives a negative pressure near a throttle valve and opens/closes an EGR path in response to the negative pressure. An EGR-VM is operated in response to an exhaust gas pressure to control a diaphragm back pressure to be introduced into the EGR valve. A CPU calculates a control amount of an ISC valve in order to obtain an optimum EGR ratio characteristic, depending upon engine operation conditions, and drives the ISC valve based on this control amount. The negative pressure at the negative pressure around the throttle valve is changed when the ISC valve is opened/closed and thus a portion of air into the engine flows through a bypass path, so that the diaphragm back pressure into the EGR valve is controlled to a desired value.
Abstract:
An engine speed control apparatus comprises: a first detector for detecting an engine speed; a second detector for detecting idling condition of the engine; a first setting circuit responsive to the first detector for setting a target engine speed; a second setting circuit responsive to the first detector for setting target ignition timing; a first integrator for obtaining a first integrated value of deviation of the engine speed from the target engine speed; a second integrator for obtaining a second integrated value of deviation of ignition timing from the target ignition timing; a third detector for detecting a flow rate of intake air; a determining circuit for determining a value of a predetermined state variable, presenting an internal condition of the engine according to the engine speed, the ignition timing, the flow rate of intake air; a third setting circuit for determining the flow rate of intake air supplied to the engine according to the value of the predetermined state variable, the first and second integrated values; and a fourth setting circuit for setting the ignition timing according to the value of the predetermined state variable, and the first and second integrations.
Abstract:
A torque base control unit calculates target torque based on an accelerator position and engine speed. The control unit further executes calculation of target airflow rate, calculation of target intake pressure, and calculation of target boost pressure based on the target torque. Target throttle position is calculated based on the target airflow rate, target intake pressure, target boost pressure, actual boost pressure, and throttle passed intake temperature. An assist control unit calculates target turbine power based on the target airflow rate and the target boost pressure calculated by the torque base control unit and calculates actual turbine power based on exhaust information. Assist power of a motor attached to a turbocharger is calculated based on the power difference between the target turbine power and the actual turbine power.
Abstract:
A torque base control unit calculates target torque on the basis of accelerator position and engine speed and, on the basis of the target torque, further executes calculation of a fuel injection amount and calculation of target boost pressure. An assist control unit calculates target compressor power on the basis of the target boost pressure calculated by the torque base control unit and target air volume calculated from the target torque and also calculates actual compressor power on the basis of exhaust information. On the basis of the power difference between the target compressor power and the actual compressor power, assist power of an auxiliary compressor provided upstream of a turbocharger is calculated.
Abstract:
A torque base control unit calculates target torque based on an accelerator position and engine speed. The control unit further executes calculation of target airflow rate, calculation of target intake pressure, and calculation of target boost pressure based on the target torque. Target throttle position is calculated based on the target airflow rate, target intake pressure, target boost pressure, actual boost pressure, and throttle passed intake temperature. An assist control unit calculates target turbine power based on the target airflow rate and the target boost pressure calculated by the torque base control unit and calculates actual turbine power based on exhaust information. Assist power of a motor attached to a turbocharger is calculated based on the power difference between the target turbine power and the actual turbine power.
Abstract:
For regenerative generation at deceleration of a vehicle, a regenerative control apparatus for vehicles equipped with a lock-up clutch comprises a control unit for controlling rotary electric machine and the lock-up clutch. When the clutch is in a complete disengagement state or a slipping state at deceleration, the control unit controls the rotary electric machine to execute regenerative generation at a partial generation level lower than a regenerative generation level in a complete engagement state. When the clutch is in a complete engagement state at regenerative generation, the control unit controls the clutch so that the coupling state is transferred to a slipping state or a complete disengagement state when the number of revolutions having correlation to engine speed becomes lower than a predetermined threshold. Thus, recovering efficiency of the regenerative braking energy can be enhanced, while suppressing engine stall due to drastic increase of engine load torque.