Abstract:
A method for controlling a supply of refrigerant to an evaporator (2) of a vapour compression system (1), such as a refrigeration system, an air condition system or a heat pump. During normal operation, the opening degree of the expansion valve (3) is controlled on the basis of an air temperature, T air , of air flowing across the evaporator (2) and/or on the basis of superheat of refrigerant leaving the evaporator (2). In the case that at least one sensor (5, 6, 23, 24) used for obtaining T air or the superheat is malfunctioning, operation of the vapour compression system (1) is switched to a contingency mode. A reference temperature, T out, ref , is calculated, based on previously obtained values of a temperature, T out , of refrigerant leaving the evaporator (2), during a predefined previous time interval, and subsequently the opening degree of the expansion valve (3) is controlled on the basis of the obtained temperature, T out , and in order to reach the calculated reference temperature, T out, ref , of the refrigerant leaving the evaporator (2). Efficient operation of the vapour compression system (1) is obtained, allowing changes in refrigeration load to be taken into account.
Abstract:
A method for detecting ice accumulation on an evaporator (104) of a vapour compression system (100) is disclosed. The evaporator (104) is part of a vapour compression system (100). The vapour compression system (100) further comprises a compressor unit (101), a heat rejecting heat exchanger (102), and an expansion device (103). The compressor unit (101), the heat rejecting heat exchanger (102), the expansion device (103) and the evaporator (104) are arranged in a refrigerant path, and an air flow is flowing across the evaporator (104). At least one temperature of air leaving the evaporator (104) is measured and a control value based on the measured temperature is derived. Determining whether ice has accumulated on the evaporator (104) by comparing the derived control value and a setpoint value.
Abstract:
A method for terminating defrosting of an evaporator (104) is disclosed. The evaporator (104) is part of a vapour compression system (100). The vapour compression system (100) further comprises a compressor unit (101), a heat rejecting heat exchanger (102), and an expansion device (103). The compressor unit (101), the heat rejecting heat exchanger (102), the expansion device (103) and the evaporator (104) are arranged in a refrigerant path, and an air flow is flowing across the evaporator (104). When ice is accumulated on the evaporator (104), the vapour compression system (100) operates in a defrosting mode. At least one temperature sensor (305) monitors a temperature T air , of air leaving the evaporator (104). A rate of change of T air is monitored and defrosting is terminated when the rate of change of the temperature, T air , approaches zero.
Abstract:
A method for terminating defrosting of an evaporator (104) is disclosed. The evaporator (104) is part of a vapour compression system (100). The vapour compression system (100) further comprises a compressor unit (101), a heat rejecting heat exchanger (102), and an expansion device (103). The compressor unit (101), the heat rejecting heat exchanger (102), the expansion device (103) and the evaporator (104) are arranged in a refrigerant path, and an air flow is flowing across the evaporator (104). When ice is accumulated on the evaporator (104), the vapour compression system (100) operates in a defrosting mode. At least one temperature sensor (305) monitors a temperature T air , of air leaving the evaporator (104). A rate of change of T air is monitored and defrosting is terminated when the rate of change of the temperature, T air , approaches zero.
Abstract:
A method for controlling a supply of refrigerant to an evaporator (2) of a vapour compression system (1) is disclosed. During a system identification phase an opening degree (12) of the expansion valve (3) is alternatingly increased and decreased, and a maximum temperature difference, (S 4 -S 2 ) max , between temperature, S 4 , of air flowing away from the evaporator (2) and temperature, S 2 , of refrigerant leaving the evaporator (2) is determined. During normal operation, the supply of refrigerant to the evaporator (2) is controlled by calculating a reference temperature, S 2,ref , based on the monitored temperature, S 4 , and the maximum temperature difference, (S 4 -S 2 ) max , determined during the system identification phase. The supply of refrigerant to the evaporator (2) is controlled in order to obtain a temperature, S 2 , of refrigerant leaving the evaporator (2) which is substantially equal to the calculated reference temperature, S 2,ref .
Abstract:
A method for estimating a thermal capacity of foodstuff stored in a refrigerated volume of a refrigeration system. A thermal capacity of air inside the refrigerated volume is estimated, e.g. a time constant. Then the setpoint temperature for the air inside the refrigerated volume is changed, and the air temperature inside the refrigerated volume is monitored. A thermal capacity of the foodstuff stored in the refrigerated volume, e.g. a time constant, is estimated, based on the monitored air temperature and on the estimated thermal capacity of the air inside the refrigerated volume. The refrigeration system is controlled at least partly on the basis of the estimated thermal capacity of the foodstuff stored in the refrigerated volume.
Abstract:
A method for controlling operation of a vapour compression system (1) is provided, the vapour compression system (1) comprising two or more refrigeration entities, such as display cases. A signal representing a reference power consumption is received and compared to an actual power consumption of the vapour compression system (1). Based on the comparison, local controllers (3) calculate a setpoint temperature for a corresponding refrigeration entity, in order to obtain a power consumption which is equal to the reference power consumption. Each refrigeration entity is controlled in accordance with the calculated setpoint temperatures.
Abstract:
A method for controlling a supply of refrigerant to an evaporator (5) of a vapour compression system (1), such as a refrigeration system, an air condition system or a heat pump, is disclosed. The vapour compression system (1) comprises an evaporator (5), a compressor (2), a condenser (3) and an expansion device (4) arranged in a refrigerant circuit. The method comprises the steps of: Actuating a component, such as an expansion valve (4), a fan or a compressor (2), of the vapour compression system (1) in such a manner that a dry zone in the evaporator (5) is changed; measuring a temperature signal representing a temperature of refrigerant leaving the evaporator (5); analysing the measured temperature signal, e.g. including deriving a rate of change signal; determining a temperature value where a gain of a transfer function between the actuated component and the measured temperature drops from a maximum value to a minimum value, in a decreasing temperature direction; defining the determined temperature value as corresponding to a zero superheat (SH=0) value of refrigerant leaving the evaporator (5), and controlling a supply of refrigerant to the evaporator (5) in accordance with the defined SH=0 temperature value, and on the basis of the measured temperature signal. The method steps may be repeated at certain time intervals in order to provide updated determinations of the SH=0 temperature value. The method allows the SH=0 point to be determined purely on the basis of the measured temperature signal. Subsequently, the supply of refrigerant to the evaporator (5) can be controlled purely on the basis of the measured temperature signal.
Abstract:
A method for controlling a supply of refrigerant to an evaporator (2) of a vapour compression system (1), such as a refrigeration system, an air condition system or a heat pump. During normal operation, the opening degree of the expansion valve (3) is controlled on the basis of an air temperature, Tair, of air flowing across the evaporator (2) and/or on the basis of superheat of refrigerant leaving the evaporator (2). In the case that at least one sensor (5, 6, 23, 24) used for obtaining Tair or the superheat is malfunctioning, operation of the vapour compression system (1) is switched to a contingency mode. A reference temperature, Tout, ref, is calculated, based on previously obtained values of a temperature, Tout, of refrigerant leaving the evaporator (2), during a predefined previous time interval, and subsequently the opening degree of the expansion valve (3) is controlled on the basis of the obtained temperature, Tout, and in order to reach the calculated reference temperature, Tout, ref, of the refrigerant leaving the evaporator (2). Efficient operation of the vapour compression system (1) is obtained, allowing changes in refrigeration load to be taken into account.