Abstract:
The scroll compressor (2) including a hermetic enclosure (3), a compression unit (11) configured to compress refrigerant, and an electric motor (16) configured to drive the compression unit (11) via a drive shaft (15), the hermetic enclosure (3) including a midshell (4), an upper cap (5) and a baseplate (6), the baseplate (6) including a mounting base (24) having a plate shape and including a central portion, and a cylindrical rim surrounding the central portion and extending upwardly, the cylindrical rim (28) being secured to the mounting base (24) by a double-welded T-joint (29), the double-welded T-joint (29) including an inner welding seam connecting an inner surface of the cylindrical rim (28) to the mounting base (24), and an outer welding seam connecting an outer surface of the cylindrical rim (28) to the mounting base (24).
Abstract:
The compression device according to the invention includes first and second compressors mounted in parallel and an oil level equalization line arranged to fluidly connect the oil sumps of the first and second compressors. The oil level equalization line includes at least one oil level regulating portion positioned near one of the first and second compressors and including a dam wall extending transversely to the longitudinal direction of said oil level regulating portion and a flow opening arranged such that, when the oil level in the oil sump of the compressor situated near the oil level regulating portion extends above the upper level of the dam wall, oil flows through the flow opening toward the other compressor.
Abstract:
A scroll compressor (2) includes a sealed housing (3); a compression unit (11), having a fixed scroll (12) and an orbiting scroll (13); a drive shaft (18) configured to drive the orbiting scroll (13) to move orbitally, the drive shaft (18) being capable of rotating about an axis of rotation; a synchronous reluctance motor (15) configured to drive the drive shaft (18) to rotate about the axis of rotation, the synchronous reluctance motor (15) comprising a rotor (16) coupled to the drive shaft (18) and a stator (17) disposed around the rotor (16), and the rotor (16) including a ferrite permanent magnet (23); a compressor control apparatus (31) configured to control the scroll compressor (2) to operate; a lubricating oil tank (27), formed in a bottom portion of the sealed housing (3); a heating apparatus configured to heat lubricating oil stored in the lubricating oil tank (27); and an oil temperature sensor (28) disposed in the lubricating oil tank (27).
Abstract:
The scroll compressor (2) comprises a hermetic enclosure (3) comprising an outer shell (4); a compression unit (11) arranged within the hermetic enclosure (3); an electric motor (21) configured to drive the compression unit (11), the electric motor (21) including a rotor (22) and a stator (23); and an inner shell (26) in which the electric motor (21) is arranged. A baffle (34) is arranged inside the inner shell (26) at a stator end winding (25) of the electric motor (21), the baffle (34) comprising deflecting means configured to deflect at least a part of a main refrigerant flow, flowing inside the inner shell (26), towards said stator end winding (25).
Abstract:
The scroll compression device includes a first scroll element (11) having a first base plate (13) and a first spiral wrap (14); a second scroll element (12) having a second base plate (15) and a second spiral wrap (16), one of the first and second scroll elements (11, 12) being configured to perform an orbiting movement in relation to the other one of the first and second scroll elements, the first and second scroll elements (11, 12) intermeshing with each other and delimiting compression chambers (17); and a sealing device (28) arranged in an end face (19) of the first spiral wrap (14) and having a sealing surface configured to cooperate with the second base plate (15). The sealing device (28) is configured to allow fluid flow from an upstream compression chamber to a downstream compression chamber through the sealing surface when the pressure in the upstream compression chamber exceeds the pressure in the downstream compression chamber, and the sealing device (28) is configured to prevent fluid flow from a downstream compression chamber to an upstream compression chamber through the sealing surface when the pressure in the downstream compression chamber exceeds the pressure in the upstream compression chamber.
Abstract:
The scroll compressor (1) includes a fixed scroll (7); an orbiting scroll (8); a drive shaft (16); a support arrangement (5) including a thrust bearing surface (9) on which is slidably mounted the orbiting scroll (8); a rotation preventing device configured to prevent rotation of the orbiting scroll (8) with respect to the fixed scroll (7), the rotation preventing device including orbital discs (28) respectively arranged in circular receiving holes (29) provided on the support arrangement (5), each orbital disc (28) being provided with an outer circumferential bearing surface (31) cooperating with an inner circumferential bearing surface (32) of the respective circular receiving hole (29); and a lubrication system configured to lubricate the inner and outer circumferential bearing surfaces (32, 31) with oil supplied from an oil sump (50), the lubrication system including lubrication passages (41) formed within the support arrangement (5), each lubrication passage (41) including an oil outlet aperture (41.2) emerging in the inner circumferential bearing surface (32) of a respective circular receiving hole (29) and at a predetermined position where low load is applied on the respective orbital disc during rotation of the drive shaft.