Abstract:
A controller includes a voltage determination module, a bus voltage command module, and a power factor correction (PFC) control module. The voltage determination module determines a desired direct current (DC) bus voltage for a DC bus electrically connected between a PFC module and an inverter power module that drives a compressor motor. The voltage determination module determines the desired DC bus voltage based on at least one of torque of the compressor motor, speed of the compressor motor, output power of the inverter power module, and drive input power. The bus voltage command module determines a commanded bus voltage based on the desired DC bus voltage. The PFC control module controls the PFC module to create a voltage on the DC bus that is based on the commanded bus voltage.
Abstract:
A control system for a motor includes a pulse-width modulation module, a pulse skip determination module, and a duty cycle adjustment module. The pulse-width modulation module generates three duty cycle values based on three voltage requests, respectively. A plurality of solid-state switches control three phases of the motor in response to the three duty cycle values, respectively. The pulse skip determination module generates a pulse skip signal. The duty cycle adjustment module selectively prevents the plurality of solid-state switches from switching during intervals specified by the pulse skip signal.
Abstract:
A system includes a pulse-width modulation (PWM) module, a subtraction module, an error reducing module, and a summing module. The PWM module controls switching of an inverter that powers a motor. The PWM module controls the switching based on a first angle in a first mode and a second angle in a second mode. The subtraction module determines a difference between the first and second angles. The error reducing module (i) stores the difference when a transition from the first mode to the second mode is commanded and (ii) decreases a magnitude of the stored difference to zero. The summing module calculates a sum of the stored difference and the second angle. The PWM module controls the switching based on the sum in the second mode.