Abstract:
Large crystal zeolites are prepared by heating a zeolite synthesis mixture under agitation to a temperature equal to or less than the effective nucleation temperature of the zeolite synthesis mixture and thereafter the zeolite synthesis mixture is heated without agitation to a temperature equal to or greater than the effective nucleation temperature of the zeolite synthesis mixture.
Abstract:
A process for converting hydrocarbons by contacting a hydrocarbon feedstream under hydrocarbon conversion conditions with a large crystal zeolite catalyst. The large crystal zeolite of the catalyst used in the hydrocarbon conversion process is made by heating an aqueous zeolite synthesis mixture under agitation to a temperature equal to or less than the effective nucleation temperature of the synthesis mixture. After this step, the aqueous synthesis mixture is heated in the absence of agitation to a temperature equal to or greater than the effective nucleation temperature of the aqueous zeolite synthesis mixture. The process finds particular application in hydrocarbon conversion processes where reduced non-selective acidity is important for reaction selectivity and/or the maintenance of catalyst activity, e.g., toluene disproportionation, dealkylation, alkylation, and transalkylation.
Abstract:
This invention relates generally to supported metallocene catalyst systems and to methods for their production and use. Specifically, this invention relates to a method for preparing supported metallocene catalyst systems using an aliphatic solvent. The catalyst systems prepared by these methods exhibit increased activity.
Abstract:
A synthetic ester composition which exhibits thermal and oxidative stability, lower friction coefficient and lower wear, wherein the ester composition comprises the reaction product of: a linear or branched alcohol having the general formula R(OH)n, wherein R is an aliphatic or cyclo-aliphatic group having from about 2 to 20 carbon atoms and n is at least 2; and at least one linear and/or branched acid which has a carbon number in the range between about C4 to C20; wherein the synthetic ester composition has a hydroxyl number of between about greater than 5 to 180, preferably between about greater than 5 to 100, and more preferably between about 10 to 80.
Abstract:
A biodegradable two-cycle lubricant which is prepared from an add mixture of: (1) a biodegradable lubricating oil comprising an add mixture of the following components: a complex alcohol ester basestock which comprises the reaction product of an add mixture of the following: a polyhydroxyl compound represented by the general formula R(OH)n wherein R is any aliphatic or cyclo-aliphatic hydrocarbyl group and n is at least 2, provided that the hydrocarbyl group contains from about 2 to 20 carbon atoms; a polybasic acid or an anhydride of a polybasic acid, provided that the ratio of equivalents of the polybasic acid to equivalents of alcohol from the polyhydroxyl compound is in the range between about 1.6:1 to 2:1; and a monohydric alcohol, provided that the ratio of equivalents of the monohydric alcohol to equivalents of the polybasic acid is in the range between about 0.84:1 to 1.2:1; wherein the complex alcohol ester exhibits a viscosity in the range between about 100-700 cSt at 40 DEG C and has a polybasic acid ester concentration of less than or equal to 70 wt.%, based on the complex alcohol ester; and at least one additional basestock, wherein the biodegradable lubricating oil exhibits biodegradability of greater than 60 % as measured by the Sturm test; and (2) an additive package.
Abstract:
A process for upgrading petroleum feedstocks boiling in the distillate plus range, which feedstocks, when cracked, result in unexpected high yields of olefins. The feedstock is hydroprocessed in at least one reaction zone countercurrent to the flow of a hydrogen-containing treat gas. The hydroprocessed feedstock is then subjected to thermal cracking in a steam cracker or to catalytic cracking in a fluid catalytic cracking process. The resulting product slate will contain an increase in olefins compared with the same feedstock, but processed in by a conventional co-current hydroprocessing process.
Abstract:
Thus, the instant invention is directed toward an oil for diesel engines comprising an admixture of (A) a major amount of an oil of lubricating viscosity, (B) at least 4 mass % dispersant, (C) at least 0.3 mass % of a metal phenate, (D) less than 0.1 mass % friction modifier, (E) less than 0.3 mass % of sulfurized phenols and, (F) less than 0.12 mass % neutral calcium sulfonate.
Abstract:
Films, made of polyethylenes and fillers, and articles made therefrom greater WVTR than previously available films based on conventional Zeigler-Natta based polyethylenes. The polyethylenes are produced in a metallocene-catalyzed production process. The films may be made by a cast film process, and may be made in widely varying filler content, generally polyethylene to filler ratios of 30/70 to 70/30. The metallocene based polyethylenes when combined with filler also permit the extrusion of thinner films leading to lighter weight and softer films. The m-polyethylenes utilized for making such films typically have a Composition Distribution Breadth Index above 50 %, an Mw/Mn below 3, and an Mz/Mw below 2. The films may be used advantageously in composite structures with fabrics (either woven or non-woven) to fabricate such articles as house-wrap.
Abstract:
Films, made of polyethylenes and fillers, and articles made therefrom greater WVTR than previously available films based on conventional Zeigler-Natta based polyethylenes. The polyethylenes are produced in a metallocene-catalyzed production process. The films may be made by a cast film process, and may be made in widely varying filler content, generally polyethylene to filler ratios of 30/70 to 70/30. The metallocene based polyethylenes when combined with filler also permit the extrusion of thinner films leading to lighter weight and softer films. The m-polyethylenes utilized for making such films typically have a Composition Distribution Breadth Index above 50 %, a Mw/Mn below 3, and a Mz/Mw below 2.
Abstract:
Polar monomer-containing copolymers derived from at least one alpha , beta unsaturated carbonyl compound, such as alkyl acrylates and one or more olefins, such olefins including ethylene and C3-C20 alpha -olefins such as propylene and 1-butene, which copolymers have (a) an average ethylene sequence length, ESL, of from about 1.0 to less than about 3.0; (b) an average of at least 5 branches per 100 carbon atoms of the copolymer chains comprising the copolymer; (c) at least about 50 % of said branches being methyl and/or ethyl branches; (d) substantially all of said incorporated polar monomer is present at the terminal position of said branches; (e) at least about 30 % of said copolymer chains terminated with a vinyl or vinylene group; (f) a number average molecular weight, Mn, of from about 300 to about 15,000 when the copolymer is intended for dispersant or wax crystal modifier uses and up to about 500,000 where intended for viscosity modifier uses; and (g) substantial solubility in hydrocarbon and/or synthetic base oil. The copolymers are produced using late-transition-metal catalyst systems and, as an olefin monomer source other than ethylene preferably inexpensive, highly dilute refinery or steam cracker feed streams that have undergone only limited clean-up steps. Fuel and lubricating oil additives, particularly dispersants, wax crystal modifiers and flow improvers, are produced. Where functionalization and derivatization of these copolymers are required for such additives it is facilitated by the olefinic structures available in the copolymer chains.