Abstract:
A fluid ejection apparatus includes a plurality of fluid ejectors. Each fluid ejector includes a pumping chamber, and an actuator configured to cause fluid to be ejected from the pumping chamber. The fluid ejection apparatus includes a feed channel fluidically connected to each pumping chamber; and at least one compliant structure formed in a surface of the feed channel. The at least one compliant structure has a lower compliance than the surface of the feed channel.
Abstract:
Methods and systems are described herein for driving droplet ejection devices with multi-level waveforms. In one embodiment, a method for driving droplet ejection devices includes applying a multi-level waveform to the droplet ejection devices. The multi-level waveform includes a first section having at least one compensating edge and a second section having at least one drive pulse. The compensating edge has a compensating effect on systematic variation in droplet velocity or droplet mass across the droplet ejection devices. In another embodiment, the compensating edge has a compensating effect on cross-talk between the droplet ejection devices.
Abstract:
A method, apparatus, and system are described herein for driving a droplet ejection device with multi-pulse waveforms. In one embodiment, a method for driving a droplet ejection device having an actuator includes applying a multi-pulse waveform with a drop-firing portion having at least one drive pulse and a non-drop-firing portion to an actuator of the droplet ejection device. The non-drop-firing portion includes a jet straightening edge having a droplet straightening function and at least one cancellation edge having an energy canceling function. The at least drive pulse causes the droplet ejection device to eject a droplet of a fluid.
Abstract:
A system includes a print head including multiple nozzles formed in a bottom surface of the print head. The nozzles are configured to eject a liquid onto a substrate. The system includes a gas flow module configured to provide a flow of gas through a gap between the bottom surface of the print head and the substrate. The gas flow module can include one or more gas nozzles configured to inject gas into the gap. The gas flow module can be configured to apply a suction to the gap.
Abstract:
A method is described wherein one or more parameters are measured that affect the nozzle velocity at which a printing fluid is ejected from a pumping chamber through a nozzle. The printing fluid is contained in the pumping chamber actuated by deflection of a piezoelectric layer. A surface area of an electrode actuating the piezoelectric layer is reduced based at least in part on the measured one or more parameters. Reducing the surface area of the electrode reduces the actuated area of the piezoelectric layer.
Abstract:
A method and apparatus for bonding on a silicon substrate are disclosed. An apparatus includes a membrane having a membrane surface, a groove in the membrane surface, a transducer having a transducer surface substantially parallel to the membrane surface, and an adhesive connecting the membrane surface to the transducer surface. The groove can be configured to permit flow of adhesive into and through the groove while minimizing voids or air gaps that could result from incomplete filling of the groove. Multiple grooves can be formed in the membrane surface and can be of uniform depth.