Abstract:
A method of repairing a component of a gas turbine engine in situ, wherein the component includes a deposit, includes directing a flow of gas, which may be an oxygen-containing gas, to the deposit of the component; and heating the component including the deposit while the component is installed in the gas turbine engine and for a duration sufficient to substantially remove the deposit.
Abstract:
A method of repairing a component of a gas turbine engine in situ, wherein the component includes a deposit, includes directing a flow of gas, which may be an oxygen-containing gas, to the deposit of the component; and heating the component including the deposit while the component is installed in the gas turbine engine and for a duration sufficient to substantially remove the deposit.
Abstract:
An apparatus for insertion through an opening in an outer casing of a gas turbine engine and inspection of internal turbine components at elevated temperatures having an optical sight tube configured to optically communicate with an interior of gas turbine engine via a distal end disposed at the interior and a proximal end disposed exterior of the internal turbine components and defined by a first longitudinal wall, at least one lens at the distal end of the optical sight tube adjacent to the longitudinal wall; and at least one longitudinal cooling groove in the longitudinal wall for flowing a cooling medium from a location external to the turbine to cool the optical sight tube at a location at least adjacent the distal end.
Abstract:
An apparatus and method for an engine component having a hot surface adjacent a hot combustion gas flow and a cooling surface adjacent a cooling fluid flow can include at least one dimple for enhancing the cooling along the cooling surface. The dimple can be shaped having a head and a tail with the head disposed upstream of the tail to provide for reduced dust collection along the engine component.
Abstract:
An airfoil comprises one or more internal cooling circuits. The cooling circuit can further comprise a near wall cooling mesh, fluidly coupling a supply passage to a mesh plenum. The mesh plenum can be disposed adjacent to the external surface of the airfoil having a plurality of film holes extending between the mesh plenum and the external surface of the airfoil. The mesh plenum can further comprise a cross-sectional area sized to facilitate machining of the film holes without damage to the interior of the airfoil.
Abstract:
A multi-color pyrometry imaging system for a high-temperature asset includes at least one viewing port in optical communication with at least one high-temperature component of the high-temperature asset. The system also includes at least one camera device in optical communication with the at least one viewing port. The at least one camera device includes a camera enclosure and at least one camera aperture defined in the camera enclosure, The at least one camera aperture is in optical communication with the at least one viewing port. The at least one camera device also includes a multi-color filtering mechanism coupled to the enclosure. The multi-color filtering mechanism is configured to sequentially transmit photons within a first predetermined wavelength band and transmit photons within a second predetermined wavelength band that is different than the first predetermined wavelength band.
Abstract:
An airfoil and method of cooling a airfoil including a leading edge, a trailing edge, a suction side, a pressure side and at least one internal cooling channel configured to convey a cooling fluid, is provided. A plurality of trailing edge bleed slots are in fluid communication with the at least one internal cooling channel, wherein a downstream edge of the pressure side of the airfoil lies upstream of a downstream edge of the suction side to expose the plurality of trailing edge bleed slots proximate to the trailing edge of the airfoil. The at least one internal cooling channel is configured to supply the cooling fluid from a source of cooling fluid towards the plurality of trailing edge bleed slots. A plurality of obstruction features are disposed within the at least one internal cooling channel and at a downstream edge of the remaining pressure side. The one or more obstruction features are configured having a predefined substantially polygon shape, to distribute a flow of the cooling fluid and provide distributed cooling to the plurality of trailing edge bleed slots.