Abstract:
Methods and systems are provided to wrap a faired tether around a drum. The tether may be connected to an aerial vehicle. The method may involve guiding a faired tether around an exterior surface of a drum, wherein the drum comprises a helical shaped step around the exterior surface that is configured to mate with at least part of the faired tether, and to stack subsequent layers of wrapped tether in a staggered manner along the longitudinal axis of the drum. The faired tether may be guided onto the step using one or more level winds.
Abstract:
Wind energy systems, such as an Airborne Wind Turbine ("AWT"), may be used to facilitate conversion of kinetic energy to electrical energy. An AWT may include an aerial vehicle that flies in a path to convert kinetic wind energy to electrical energy. The aerial vehicle may be tethered to a ground station via a tether. As a result of continuous circular flights paths, the tether may rotate continuously in one direction. Thus, it may be desirable to have a cable management apparatus that allows for tether rotation and helps reduce strain on the tether.
Abstract:
An Airborne Wind Turbine ("AWT") may be used to facilitate conversion of kinetic energy to eiectrieai energy. An AWT may include an aerial vehicle ihai flies in a path to convert kinetic wind energy to electrical energy. The aerial vehicle may be tethered to a ground station with a tether that terminates at a tether termination mount, in one aspect, the tether has a core and at least one electrical conductor. The tether core may be terminated at a first location in a tether termination mount along an axis of the termination mount, and the at least one electrical conductor may be terminated at a second location in the tether termination mount along the same axis that the core is terminated. This termination configuration may focus tensile stress on the tether to the tether core, and minimize such stress on the at least one electrical conductor during aerial vehicle flight.
Abstract:
A system may include a tether, a tether gimbal assembly, a drive mechanism, and a control system. The tether may include a distal end, a proximate end, and at least one conductor. The tether gimbal assembly may be connected to the tether. The drive mechanism may be coupled to the tether gimbal assembly and may include a housing, a spindle, and a motor. The housing may be fixed to the tether gimbal assembly. The spindle may be rotatably coupled to the housing, and the tether may be coupled to the spindle and rotate in conjunction with the spindle. The motor may be coupled to the spindle and configured to rotate the spindle and the tether. And the control system may be configured to operate the drive mechanism to control twist in the tether.
Abstract:
Methods and systems are provided to wrap a faired tether around a drum. The tether may be connected to an aerial vehicle. The method may involve guiding a faired tether around an exterior surface of a drum, wherein the drum comprises a helical shaped step around the exterior surface that is configured to mate with at least part of the faired tether, and to stack subsequent layers of wrapped tether in a staggered manner along the longitudinal axis of the drum. The faired tether may be guided onto the step using one or more level winds.
Abstract:
Unless otherwise indicated herein, the materials described in this section are not prior art to the claims in this application and are not admitted to be prior art by inclusion in this section. Power generation systems may convert chemical and/or mechanical energy (e.g., kinetic energy) to electrical energy for various applications, such as utility systems. As one example, a wind energy system may convert kinetic wind energy to electrical energy.