Abstract:
Semiconductor chip (1101) of a ball grid array device (1100) is mounted onto tape substrate (1102) using attach adhesive (1103). The metal layer on the top surface of substrate (1102) uses between about 30% to 90% of its area for connecting lines (1104), and only the remainder for members/rings (1105) and terminals (1106). Routing of differential pair signals and large numbers of signals on a single layer tape package are feasible. This embodiment creates an inexpensive high performance tape ball grid array package for chip-scale devices. Terminals (1106) serve the connection (by bonding wires or reflow bumps) to the chip contact pads. Inserted in members/rings (1105) are the conductive pins (1107), which serve as anchors for the solder bodies/balls (1108). Pins (1107) are substantially insensitive to the thermomechanical stresses, which occur in device (1100) during assembly, testing and operation.
Abstract:
A reel carrier that includes a pallet having a platform bound by a frame and a shaft. The carrier includes a reel that is supported on the shaft. The reel includes a round drum rotatable about the shaft, wherein the rotation may be in a forward and/or a reverse or backward rotational direction. The carrier also includes a motor operably coupled to cause rotation of the drum and may be further operably coupled to cause deployment and/or retraction of one or more wheels included with the pallet, wherein the motor also controls locomotion of the one or more wheels.
Abstract:
Multiple write buffers are provided within each memory module and are utilized to buffer multiple received write data forwarded to the chip via a write-to-buffer data operation. When a write is received at the memory controller, the memory controller first issues the write-to-buffer (data) operation and the data is forwarded to one of the write buffers. Multiple writes targeting the same DIMM are thus buffered. When all of the available buffers at a memory module are full, the memory controller issues the set of address only write commands to the memory module. The control logic of the DIMM streams all of the buffered write data to the memory device(s) in one continuous burst. By buffering multiple writes and then writing all buffered write data within the DIMM in a single burst, the write-to-read turnaround penalty of the memory module's data bus is substantially minimized.
Abstract:
A system for analogue to digital conversion comprising a means (4) for receiving an input analogue signal, a dither generator for adding a dither signal and an analogue to digital converter (2) for converting the combined input signal and dither signal to a digital value, characterized in that the dither generator provides a dither signal of a form comprising a first periodic dither signal having superimposed and being shaped by a second signal having at least one component which varies the first periodic dither signal over at least one quantization interval of the analogue to digital converter.