Abstract:
A system for training a neural network. A switch is linked to feature detectors in at least some of the layers of the neural network. For each training case, the switch randomly selectively disables each of the feature detectors in accordance with a preconfigured probability. The weights from each training case are then normalized for applying the neural network to test data.
Abstract:
A system can be configured to perform tasks such as converting recorded speech to a sequence of phonemes that represent the speech, converting an input sequence of graphemes into a target sequence of phonemes, translating an input sequence of words in one language into a corresponding sequence of words in another language, or predicting a target sequence of words that follow an input sequence of words in a language (e.g., a language model). In a speech recognizer, the RNN system may be used to convert speech to a target sequence of phonemes in real-time so that a transcription of the speech can be generated and presented to a user, even before the user has completed uttering the entire speech input.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating a system output from a system input. In one aspect, a neural network system includes a memory storing a set of register vectors and data defining modules, wherein each module is a respective function that takes as input one or more first vectors and outputs a second vector. The system also includes a controller neural network configured to receive a neural network input for each time step and process the neural network input to generate a neural network output. The system further includes a subsystem configured to determine inputs to each of the modules, process the input to the module to generate a respective module output, determine updated values for the register vectors, and generate a neural network input for the next time step from the updated values of the register vectors.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a neural network. One of the methods includes obtaining partitioned training data for the neural network, wherein the partitioned training data comprises a plurality of training items each of which is assigned to a respective one of a plurality of partitions, wherein each partition is associated with a respective difficulty level; and training the neural network on each of the partitions in a sequence from a partition associated with an easiest difficulty level to a partition associated with a hardest difficulty level, wherein, for each of the partitions, training the neural network comprises: training the neural network on a sequence of training items that includes training items selected from the training items in the partition interspersed with training items selected from the training items in all of the partitions.
Abstract:
A system and method for generating training images. An existing training image is associated with a classification. The system includes an image processing module that performs color-space deformation on each pixel of the existing training image and then associates the classification to the color-space deformed training image. The technique may be applied to increase the size of a training set for training a neural network.
Abstract:
A system and method for generating training images. An existing training image is associated with a classification. The system includes an image processing module that performs color-space deformation on each pixel of the existing training image and then associates the classification to the color-space deformed training image. The technique may be applied to increase the size of a training set for training a neural network.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for augmenting neural networks with an external memory using reinforcement learning. One of the methods includes providing an output derived from the system output portion of the neural network output as a system output in the sequence of system outputs; selecting a memory access process from a predetermined set of memory access processes for accessing the external memory from the reinforcement learning portion of the neural network output; writing and reading data from locations in the external memory in accordance with the selected memory access process using the differentiable portion of the neural network output; and combining the data read from the external memory with a next system input in the sequence of system inputs to generate a next neural network input in the sequence of neural network inputs.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for translating terms using numeric representations. One of the methods includes obtaining data that associates each term in a vocabulary of terms in a first language with a respective high-dimensional representation of the term; obtaining data that associates each term in a vocabulary of terms in a second language with a respective high-dimensional representation of the term; receiving a first language term; and determining a translation into the second language of the first language term from the high-dimensional representation of the first language term and the high-dimensional representations of terms in the vocabulary of terms in the second language.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for predicting likelihoods of conditions being satisfied using recurrent neural networks. One of the systems is configured to process a temporal sequence comprising a respective input at each of a plurality of time steps and comprises: one or more recurrent neural network layers; one or more logistic regression nodes, wherein each of the logistic regression nodes corresponds to a respective condition from a predetermined set of conditions, and wherein each of the logistic regression nodes is configured to, for each of the plurality of time steps: receive the network internal state for the time step; and process the network internal state for the time step in accordance with current values of a set of parameters of the logistic regression node to generate a future condition score for the corresponding condition for the time step.
Abstract:
A parallel convolutional neural network is provided. The CNN is implemented by a plurality of convolutional neural networks each on a respective processing node. Each CNN has a plurality of layers. A subset of the layers are interconnected between processing nodes such that activations are fed forward across nodes. The remaining subset is not so interconnected.