Abstract:
A display apparatus includes a transparent substrate having first and second sides, an array of LED micro-display panels, and an array of collimating reflectors. The LED micro-display panels are disposed within the transparent substrate between the first and second sides and oriented to emit sub-image portions of a display image towards the first side. The collimating reflectors are disposed within the transparent substrate between the first side and the array of LED micro-display panels. The collimating reflectors are aligned with the LED micro-display panels to reflect the sub-image portions back out the second side of the transparent substrate. The LED micro-display panels are offset from the collimating reflectors to expand the sub-image portions prior to reflection by the collimating reflectors.
Abstract:
Implementations are described of an eyepiece for a head wearable display. The eyepiece includes a curved lightguide for guiding display light via total internal reflection between a peripherally-located input surface and a viewing region and an output coupler disposed across the viewing region to redirect the display light towards an eyeward direction for output from the curved light guide. The output coupler has an optical axis and has a set of reflective surfaces that includes at least two individual reflective surfaces to reflect incident display light toward the eyeward direction in at least two different directions relative to the optical axis of the output coupler. Other embodiments are disclosed and claimed.
Abstract:
Embodiments are described of an apparatus including an eyepiece having a front surface, a back surface spaced apart from the front surface, and an edge forming a perimeter of the eyepiece. The eyepiece includes an angled surface to direct light eye-measurement light reflected from an eye into the eyepiece and to direct display light out of the eyepiece to the eye. A first waveguide is formed in the eyepiece and extending from the angled surface to the edge, the first waveguide being optically coupled to a first portion of the angled surface having a first surface treatment. And a second waveguide is formed in the eyepiece and extending from the angled surface to the edge, the second waveguide being optically coupled to a second portion of the angled surface having a second surface treatment.
Abstract:
An eyepiece for a head wearable display includes a light guide component for guiding display light received at a peripheral location offset from a viewing region and emitting the display light along an eye-ward direction in the viewing region. The light guide component includes an input surface oriented to receive the display light into the light guide component, an eye-ward facing surface having a reflection portion and a viewing portion, a folding surface oriented to reflect the display light received through the input surface to the reflection portion of the eye-ward facing surface, and a first interface surface oriented to receive the display light reflected from the reflection portion of the eye-ward facing surface. A partially reflective layer is disposed on the first interface surface in the viewing region to reflect the display light along the eye-ward direction through viewing portion of the eye-ward facing surface.
Abstract:
Implementations are described of an eyepiece for a head wearable display. The eyepiece includes a curved lightguide for guiding display light via total internal reflection between a peripherally-located input surface and a viewing region and an output coupler disposed across the viewing region to redirect the display light towards an eyeward direction for output from the curved light guide. The output coupler has an optical axis and has a set of reflective surfaces that includes at least two individual reflective surfaces to reflect incident display light toward the eyeward direction in at least two different directions relative to the optical axis of the output coupler. Other embodiments are disclosed and claimed.
Abstract:
An apparatus for use with a head wearable display includes a curved eyepiece for guiding display light to a viewing region offset from a peripheral location and emitting the display light along an eye-ward direction in the viewing region. The curved eyepiece includes a curved lightguide to guide the display light, an eye-ward facing surface that is concave, a world facing surface that is convex and opposite the eye-ward facing surface, and an optical combiner disposed at the viewing region to redirect the display light towards the eye-ward direction for output from the curved lightguide. The optical combiner is partially transmissive to ambient light incident through the world facing surface such that the viewing region is see-through. In some embodiments, a prism is disposed proximate to the input surface to pre-compensate the display light for lateral chromatic aberrations resulting the curved lightguide.
Abstract:
Techniques and mechanisms for fabricating an eyepiece from a lens blank including blank bodies that are bonded to each other. In an embodiment, the blank bodies are formed by injection molding and adhered to one another. Fabrication of the eyepiece includes variously machining the blank bodies to shape respective lens bodies of the eyepiece. One or more blocking structures are coupled to reinforce the lens blank during at least part of such machining. In another embodiment, any blocking structures that are to resist forces of a particular machining process are coupled only indirectly to one of the blank bodies.
Abstract:
An apparatus for use with a head wearable display includes a curved eyepiece for guiding display light received at an input surface peripherally located from a viewing region and emitting the display light along an eye-ward direction in the viewing region. The curved eyepiece includes an optical combiner, an eye-ward facing surface that is concave, a world facing surface that is convex, and a curved lightguide disposed between the eye-ward facing and world facing surfaces to guide the display light via total internal reflections from the input surface to the viewing region. The optical combiner is disposed within the curved eyepiece at the viewing region to redirect the display light towards the eye-ward direction. The optical combiner includes a pattern of reflective elements separated by interstitial regions. The interstitial regions pass ambient light incident through the world facing surface such that the viewing region is partially see-through.
Abstract:
An apparatus for use with a head wearable display includes a curved eyepiece for guiding display light to a viewing region offset from a peripheral location and emitting the display light along an eye-ward direction in the viewing region. The curved eyepiece includes a curved lightguide to guide the display light, an eye-ward facing surface that is concave, a world facing surface that is convex and opposite the eye-ward facing surface, and an optical combiner disposed at the viewing region to redirect the display light towards the eye-ward direction for output from the curved lightguide. The optical combiner is partially transmissive to ambient light incident through the world facing surface such that the viewing region is see-through. In some embodiments, a prism is disposed proximate to the input surface to pre-compensate the display light for lateral chromatic aberrations resulting the curved lightguide.
Abstract:
An eyepiece for a head wearable display includes a curved lightguide component, an input coupler, and an output coupler. The curved lightguide component guides display light received at an input region peripherally located from a viewing region and emits the display light along an eye-ward direction in the viewing region. The curved lightguide component includes an eye-ward facing surface that is concave and a world facing surface that is convex. The input coupler is disposed at the input region to couple the display light into the curved lightguide component. The output coupler is disposed at the viewing region to redirect the display light towards the eye-ward direction for output from the curved lightguide component. The output coupler is partially transmissive to ambient light incident through the world facing surface. The display light is guided between the input coupler and the output coupler entirely by total internal reflection.