Abstract:
System (500), mit: einem Wärmeentnahmematerial (530); einem ersten Wafer (104), in dem eine Photodiode vorliegt; und einem zweiten Wafer (102) in dem ein Optischer-Wellenleiter-Pfademitter vorliegt, wobei der erste Wafer und der zweite Wafer anhand eines Waferbondingprozesses, der einen Zwischenraum (128) zwischen dem ersten Wafer und dem zweiten Wafer bildet, aneinander gebondet sind, wobei der Zwischenraum dahin gehend konfiguriert ist, um das Wärmeentnahmematerial (530) aufzunehmen, wobei in dem Zwischenraum (128) zwischen dem ersten Wafer (104) und dem zweiten Wafer (102) ein strukturiertes Bondingmaterial (114), das eine Waferbondverbindung zwischen dem ersten Wafer (104) und dem zweiten Wafer (102) bewirkt, und ein Zwischenraumeinstellmaterial (112) zum Aufrechterhalten eines Abstands zwischen dem ersten Wafer (104) und dem zweiten Wafer (102) während des Waferbondingprozesses angeordnet ist, wobei das Zwischenraumeinstellmaterial (112) geformt ist, um einen Kanal (506) zum Aufnehmen und Lenken des Wärmeentnahmematerials (530) zu bilden, und wobei das...
Abstract:
In an embodiment, a microchip includes a plurality of heat-producing electronic devices and a plurality of heat-sensitive devices. A plurality of temperature control elements are spatially distributed relative to the heat-producing electronic devices and the heat-sensitive devices to enable active control of temperature to compensate for spatially non-uniform and temporally-varying heat emitted from the heat-producing electronic devices.
Abstract:
A pattern tool (200 or 200a) and/or substrate (300 or 300a) including one or more strain control regions (208 or 308) to prevent deformation-related misalignment.
Abstract:
A method of contact lithography includes predicting distortions likely to occur in transferring a pattern from a mold (110) to a substrate (130) during a contact lithography process: and modifying the mold (110) to compensate for the distortions. A contact lithography system includes a design subsystem (210) configured to generate data describing a lithography pattern: an analysis subsystem (220) configured to identify one or more distortions likely to occur when using a mold (110) created from the data; and a mold modification subsystem (230) configured to modify the data to compensate for the one or more distortions identified by the analysis subsystem (220).
Abstract:
Various embodiments of the present invention are related to microresonator systems that can be used as a laser, a modulator, and a photodetector and to methods for fabricating the microresonator systems. In one embodiment, a microresonator system (100) comprises a substrate (106) having a top surface layer (104), at least one waveguide (114,116) embedded within the substrate (106), and a microdisk (102) having a top layer (118), an intermediate layer (122), a bottom layer (120), current isolation region (128), and a peripheral annular region (124,126). The bottom layer (120) of the microdisk (102) is in electrical communication with the top surface layer (104) of the substrate (106) and is positioned so that at least a portion of the peripheral annular region (124,126) is located above the at least one waveguide (114,116). The current isolation region (128) is configured to occupy at least a portion of a central region of the microdisk and has a relatively lower refractive index and relatively larger bandgap than the peripheral annular region.
Abstract:
An apparatus and related methods for facilitating surface-enhanced Raman spectroscopy (SERS) is described. The apparatus comproses a SERS-active structure (102) near which a plurality of analyte molecules (A) are disposed and an actuation device (112) in actuable communication with the SERS-active structure (102) to deform the SERS-active structure (102) while the analyte molecules (A) are disposed therenear. The deformation of the SERS-active structure (102) varies an intensityof radiation Raman-scattered from the analyte molecules (A).