Abstract:
Un procédé permet de produire des régions P 9E ou N 9E hyperabruptes (12) dans la couche proche de la surface d'un cristal (10) sensiblement dépourvu d'impuretés en utilisant l'épitaxie de la phase solide et le recuit transitoire. On commence le processus de production d'une distribution rétrograde hyperabrupte de la substance dopante en rendant amorphe la couche proche de la surface d'un cristal de base, puis en implantant une distribution rétrograde abrupte de la substance voulue dans la couche amorphe, de sorte que la distribution rétrograde se limite à la couche amorphe, en évitant ainsi des effets de canalisation pendant l'implantation. On rétablit la structure sensiblement dépourvue de défauts du cristal de base implanté à une température suffisamment élevée pour induire la croissance épitaxiale de la phase solide sur le cristal sous-jacent n'ayant pas été rendu amorphe, mais à une température suffisamment basse pour éviter une diffusion significative de la substance implantée. La substance implantée est activée par la suite par un processus rapide de recuit thermique, à une température suffisamment élevée pour activer la substance implantée, mais pendant une durée très courte pour qu'il n'y ait pas de diffusion de longue portée. Dans un mode préféré de réalisation, la substance implantée est le bore, BF2+, phosphore ou arsénique dans les 0,20 micromètres supérieurs d'un cristal de base de silicium sensiblement dépourvu de défaut, en masse ou déposé épitaxialement sur un substrat isolant tel que le saphir.
Abstract:
A method of fabricating CMOS circuit devices on an insulator substrate (26) is disclosed in which a solid phase epitaxy process is applied to islands (28, 30) for the indivudual devices in the same step as the channel dopant implants (8, 10). An ion species (12), preferably silicon for a silicon island, is implanted into each island (28, 30) at an energy and dosage sufficient to amorphize a buried layer of the island in the vicinity of an underlying insulated substrate (26); silicon-on-sapphire (SOS) is preferably employed. The buried layers are then recrystallized, using the unamorphized portions of the semiconductor islands as crystallization seeds. Islands of generally uniform, high quality semiconductor material are thus obtained which utilize dopant implants more efficiently, and avoid prior parasitic transistors and leakage currents. By implanting the ion species to a greater depth than the nominal island thickness for n-channel devices, and to a lesser depth than the nominal island thickness for p-channel devices, back channel current leakage is reduced while undesirable aluminum auto doping is avoided for the p-channel devices.
Abstract:
Method of fabricating a semiconductor on insulator composite substrate comprised of a semiconductor layer adjacent an insulator substrate, the defect density profile of the semiconductor layer being low and relatively uniform, a relatively thin region of the semiconductor layer at the semiconductor/insulator interface having a substantially greater defect density. The method comprises the steps of depositing the semiconductor layer (12a) adjacent the insulator substrate (10), amorphizing a buried portion (14) of the semiconductor layer without damaging the insulator substrate such as to release contaminants into the semiconductor layer, recrystallizing the amorphous portion of the semiconductor or layer, removing a portion of the semiconductor layer so as to expose the recrystallized layer (38), and depositing an additional semiconductor layer (40) of the recrystallized layer to provide an essentially defect free semiconductor layer of any desired thickness. The provision of semiconductor layers formed by either appropriately selecting the depth within the semiconductor layer at which the amorphization occurs and the width of the amorphized region or permitting self-annealing to occur during the amorphization, or both, having a desired high defect density and interposed between the recrystallized layer and the insulator substrate are also disclosed.