12.
    发明专利
    未知

    公开(公告)号:DE69032607T2

    公开(公告)日:1999-05-27

    申请号:DE69032607

    申请日:1990-05-16

    Applicant: IBM

    Abstract: The functions of two virtual operating systems (e.g. S/370 VM, VSE or IX370 and S/88 OS) are merged into one physical system. Partner pairs of S/88 processors run the S/88 OS and handle the fault tolerant and single system image aspects of the system. One or more partner pairs of S/370 processors are coupled to corresponding S/88 processors dirertly and through the S/88 bus. Each S/370 processor is allocated form 1 to 16 megabytes of contiguous storage from the S/88 main storage. Each S/370 virtual operating system thinks its memory allocation starts at address 0, and it manages its memory through normal S/370 dynamic memory allocation and paging techniques. The S/370 is limit checked to prevent the S/370 from accessing S/88 memory space. The S/88 Operating System is the master over all system hardware and I/O devices. The S/88 processors across the S/370 address space in direct response to a S/88 application program so that the S/88 may move I/O data into the S/370 I/O buffers and process the S/370 I/O operations. The S/88 and S/370 peer processor pairs to execute their respective Operating Systems in a single system environment without significant rewriting of either operating system. Neither operating system is aware of the other operating system nor the other processor pairs.

    Fault tolerant data processing system

    公开(公告)号:HK1008700A1

    公开(公告)日:1999-05-14

    申请号:HK98108875

    申请日:1998-07-04

    Applicant: IBM

    Abstract: The functions of two virtual operating systems (e.g. S/370 VM, VSE or IX370 and S/88 OS) are merged into one physical system. Partner pairs of S/88 processors run the S/88 OS and handle the fault tolerant and single system image aspects of the system. One or more partner pairs of S/370 processors are coupled to corresponding S/88 processors directly and through the S/88 bus. Each S/370 processor is allocated form 1 to 16 megabytes of contiguous storage from the S/88 main storage. Each S/370 virtual operating system thinks its memory allocation starts at address 0, and it manages its memory through normal S/370 dynamic memory allocation and paging techniques. The S/370 is limit checked to prevent the S/370 from accessing S/88 memory space. The S/88 Operating System is the master over all system hardware and I/O devices. The S/88 processors across the S/370 address space in direct response to a S/88 application program so that the S/88 may move I/O data into the S/370 I/O buffers and process the S/370 I/O operations. The S/88 and S/370 peer processor pairs to execute their respective Operating Systems in a single system environment without significant rewriting of either operating system. Neither operating system is aware of the other operating system nor the other processor pairs.

    14.
    发明专利
    未知

    公开(公告)号:DE69032611D1

    公开(公告)日:1998-10-08

    申请号:DE69032611

    申请日:1990-05-16

    Applicant: IBM

    Abstract: The functions of two virtual operating systems (e.g. S/370 VM, VSE or IX370 and S/88 OS) are merged into one physical system. Partner pairs of S/88 processors run the S/88 OS and handle the fault tolerant and single system image aspects of the system. One or more partner pairs of S/370 processors are coupled to corresponding S/88 processors directly and through the S/88 bus. Each S/370 processor is allocated form 1 to 16 megabytes of contiguous storage from the S/88 main storage. Each S/370 virtual operating system thinks its memory allocation starts at address 0, and it manages its memory through normal S/370 dynamic memory allocation and paging techniques. The S/370 is limit checked to prevent the S/370 from accessing S/88 memory space. The S/88 Operating System is the master over all system hardware and I/O devices. The S/88 processors across the S/370 address space in direct response to a S/88 application program so that the S/88 may move I/O data into the S/370 I/O buffers and process the S/370 I/O operations. The S/88 and S/370 peer processor pairs to execute their respective Operating Systems in a single system environment without significant rewriting of either operating system. Neither operating system is aware of the other operating system nor the other processor pairs.

    16.
    发明专利
    未知

    公开(公告)号:DE69113241T2

    公开(公告)日:1996-03-28

    申请号:DE69113241

    申请日:1991-11-20

    Applicant: IBM

    Abstract: An information handling apparatus for transferring and composing image signals for display including a bus interface circuit adapted to allow selective access to a bus of an independent image signal generated by an independent image source. The selective access enables composition of the independent image signal in response to control information; the composition enables real time display of a composed image signal.

    18.
    发明专利
    未知

    公开(公告)号:DE69113235T3

    公开(公告)日:2002-06-27

    申请号:DE69113235

    申请日:1991-11-20

    Applicant: IBM

    Abstract: An information handling apparatus for transferring and composing image signals including a plurality of media sources configured to provide a corresponding plurality of image signals, a media bus connected to the media sources, and a media control module coupled to the media bus. The media bus allows selective access for the plurality of image signals. The selective access enables composition of the independent image signals in response to control information. The media control module receives a composed image signal from the media bus and to provides the composed image signal to a display device.

    19.
    发明专利
    未知

    公开(公告)号:DE69032608T2

    公开(公告)日:1999-05-27

    申请号:DE69032608

    申请日:1990-05-16

    Applicant: IBM

    Abstract: The functions of two virtual opening systems (e.g. S/370 VM, VSE or IX370 and S/88 OS) are merged into one physical system. Partner pairs of S/88 processors run the S/88 OS and handle the fault tolerant and single system image aspects of the system. One or more partner pairs of S/370 processors are coupled to corresponding S/88 processors directly and through the S/88 bus. Each S/370 processor is allocated form 1 to 16 megabytes of contiguous storage from the S/88 main storage. Each S/370 virtual operating system thinks its memory allocation starts at address 0, and it manages its memory through normal S/370 dynamic memory allocation and paging techniques. The S/370 is limit checked to prevent the S/370 from accessing S/88 memory space. The S/88 Operating System is the master over all system hardware and I/O devices. The S/88 processors across the S/370 address space in direct response to a S/88 application program so that the S/88 may move I/O data into the S/370 I/O buffers and process the S/370 I/O operations. The S/88 and S/370 peer processor pairs to execute their respective Operating Systems in a single system environment without significant rewriting of either operating system. Neither operating system is aware of the other operating system nor the other processor pairs.

    20.
    发明专利
    未知

    公开(公告)号:DE69032607D1

    公开(公告)日:1998-10-08

    申请号:DE69032607

    申请日:1990-05-16

    Applicant: IBM

    Abstract: The functions of two virtual operating systems (e.g. S/370 VM, VSE or IX370 and S/88 OS) are merged into one physical system. Partner pairs of S/88 processors run the S/88 OS and handle the fault tolerant and single system image aspects of the system. One or more partner pairs of S/370 processors are coupled to corresponding S/88 processors dirertly and through the S/88 bus. Each S/370 processor is allocated form 1 to 16 megabytes of contiguous storage from the S/88 main storage. Each S/370 virtual operating system thinks its memory allocation starts at address 0, and it manages its memory through normal S/370 dynamic memory allocation and paging techniques. The S/370 is limit checked to prevent the S/370 from accessing S/88 memory space. The S/88 Operating System is the master over all system hardware and I/O devices. The S/88 processors across the S/370 address space in direct response to a S/88 application program so that the S/88 may move I/O data into the S/370 I/O buffers and process the S/370 I/O operations. The S/88 and S/370 peer processor pairs to execute their respective Operating Systems in a single system environment without significant rewriting of either operating system. Neither operating system is aware of the other operating system nor the other processor pairs.

Patent Agency Ranking