Abstract:
A method of forming a dual self-aligned fully silicided gate in a CMOS device requiring only one lithography level, wherein the method comprises forming a first type semiconductor device (270) having a first well region (253) in a semiconductor substrate (252), first source/drain silicide areas (266) in the first well region (253), and a first type gate (263) isolated from the first source/drain silicide areas (266); forming a second type semiconductor device (280) having a second well region (254) in the semiconductor substrate (252), second source/drain silicide areas (256) in the second well region (254), and a second type gate (258) isolated from the second source/drain silicide areas (256); selectively forming a first metal layer (218) over the second type semiconductor device (280); performing a first fully silicided (FUSI) gate formation on only the second type gate (258); depositing a second metal layer (275) over the first and second type semiconductor devices (270,280); and performing a second FUSI gate formation on only the first type gate (263).
Abstract:
PROBLEM TO BE SOLVED: To provide a semiconductor substrate having different surface orientations (namely, hybrid surface orientation). SOLUTION: In the semiconductor substrate, a first device area 2 has a substantially flat surface 16A which is oriented to one orientation of group of first equivalent crystal surfaces, and a second device area contains a protrusive semiconductor structure 18 having a plurality of cross surfaces 16B which are oriented to an orientation of group of other equivalent crystal surfaces. A semiconductor device structure can be formed using such a semiconductor substrate. Particularly, a first field-effect transistor (FET) can be formed in the first device area, the first FET contains a channel which is located along a substantially flat surface in the first device area. A second complementary FET can be formed in the second device area, and the second complementary FET contains a channel which is located along the plurality of cross surfaces of the protrusive semiconductor structure in the second device area. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a SMT (stress memory technique) for both of an nFET and a pFET. SOLUTION: The method includes forming a tensile stress layer 120 over the nFET 104 and a compressive stress layer 122 over the pFET 106, annealing 150 to memorize stress in the semiconductor device and removing the stress layers. The compressive stress layer 122 may include a high stress silicon nitride deposited using a high density plasma (HDP) deposition method. The annealing step may include the one used in a temperature of approximately 400-1,200°C. The high stress compressive silicon nitride and/or the anneal temperatures ensure that the compressive stress memorization is retained in the pFET 106. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
A MOSFET structure and method of forming is described. The method includes forming a metal-containing layer (56) that is thick enough to fully convert the semiconductor layer (22) to a semiconductor metal alloy in a first MOSFET type region (40) but only thick enough to partially convert the semiconductor layer (20) to a semiconductor metal alloy in a second MOSFET type region (30). In one embodiment, the gate stack in a first MOSFET region (40) is recessed prior to forming the metal-containing layer (56) so that the height of the first MOSFET semiconductor stack is less than the height of the second MOSFET semiconductor stack. In another embodiment, the metal-containing layer (56) is thinned over a first type MOSFET region (40) relative to a second type MOSFET region (30) prior to the conversion process.
Abstract:
A method of fabricating a complementary metal oxide semiconductor (CMOS) device, wherein the method comprises forming a first well region (103) in a semiconductor substrate (102) for accommodation of a first type semiconductor device (130); forming a second well region (104) in the semiconductor substrate (102) for accommodation of a second type semiconductor device (140); shielding the first type semiconductor device (130) with a mask (114); depositing a first metal layer (118) over the second type semiconductor device (140); performing a first salicide formation on the second type semiconductor device (140); removing the mask (114); depositing a second metal layer (123) over the first and second type semiconductor devices (130,140); and performing a second salicide formation on the first type semiconductor device (130). The method requires only one pattern level and it eliminates pattern overlay as it also simplifies the processes to form different suicide material over different devices.
Abstract:
A method for providing a dual stress memory technique in a semiconductor device (100) including an nFET (104, 204) and a pFET (106, 206) and a related structure are disclosed. One embodiment of the method includes forming a tensile stress layer (120) over the nFET (104) and a compressive stress layer (122) over the pFET (106), annealing to memorize stress in the semiconductor device and removing the stress layers. The compressive stress layer may include a high stress silicon nitride deposited using a high density plasma (HDP) deposition method. The annealing step may include using a temperature of approximately 400-1200 [err]C. The high stress compressive silicon nitride and/or the anneal temperatures ensure that the compressive stress memorization is retained in the pFET.