Abstract:
For example, an apparatus may be configured to cause wireless communication station (STA) to set a cellular Quality of Service (QoS) index value in a cellular QoS index field to indicate a predefined setting of a set of a plurality QoS parameters for a cellular QoS traffic flow to be communicated by the STA over a Wireless Local Area Network (WLAN). For example, the apparatus may be configured to cause the STA to transmit a Stream Classification Service (SCS) request to an Access Point (AP) of the WLAN, the SCS request including an SCS descriptor element, the SCS descriptor element including the cellular QoS index field.
Abstract:
For example, a wireless communication station (STA) may be configured to determine whether a stream of frames is suitable for out-of-order delivery from a first Medium Access Control layer (MAC-layer) process to a second MAC-layer process, the second MAC-layer process is above the first MAC-layer process; and, based on a determination that the stream of frames is suitable for out-of-order delivery, to deliver to the second MAC-layer process one or more frames of the stream of frames according to an out-of-order delivery scheme.
Abstract:
Example methods and apparatus to facilitate time synchronization of audio over Bluetooth Low Energy are disclosed herein. An apparatus includes a packet processor to process a data packet to identify a timestamp encoded in the data packet; a buffer to store the data packet with the timestamp; and a host to: when the data packet is removed from the buffer, initiate a timer; and when the timer reaches a time corresponding to a sum of the timestamp and a presentation delay time, out the data packet to render the data packet.
Abstract:
Disclosed herein are techniques to enable discovery of P2P capable devices and associated network connection information. In some embodiments, an information element is included in a transmitted request to indicate a request for network connection information from another wireless device. The device may respond with indications of the requested network connection information. Network connectivity capability determined from the network connection information may be used to decide whether to setup a Wi-Fi Direct link or a Tunneled Direct Link Setup (TDLS), or whether to use an AP infrastructure link with the other device.
Abstract:
Disclosed herein are techniques to advertise and discover peer-to-peer services and connection attributes. In particular, services and connection attributes for a peer-to-peer network, like Wi-Fi Direct can be advertised and discovered using near field communication techniques by transmitting at least a handover select frame including an advertised services hash in the P2P attributes portion of the frame.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of setting up an Application Service Platform (ASP) Peer-to-Peer (P2P) persistent group. For example, an apparatus may include a first ASP to communicate with a second ASP to setup one or more ASP-P2P groups over a wireless communication link, the first ASP is to form each ASP-P2P group only as an ASP-P2P persistent group extendable over a plurality of distinct sessions, the first ASP is to store credentials of the ASP-P2P persistent group for use during the sessions.
Abstract:
A station (STA) configured for Quality-of-Service (QoS) management performs a Simple Reflective QoS (SRQ) protocol with an access point (AP) (i.e., another QoS STA) for QoS management of a QoS flow. As part of the SRQ protocol to exchange QoS profiles, the STA may encode a request frame to include a first SRQ capabilities information element (IE) for transmission to the AP. The inclusion of the first SRQ capabilities IE indicating that the STA supports the SRQ protocol. The STA may also decode a response frame received from the AP. The response frame includes a second SRQ capabilities IE indicating that the AP supports the SRQ protocol. The STA may also determine a QoS profile for the QoS flow based on SRQ capabilities of the STA and the AP. The STA may also create a SRQ tuple based the QoS profile for initiating the QoS flow.
Abstract:
Methods, apparatuses, and computer readable media for report identification and power control for ranging in a wireless network are disclosed. An apparatus of a responding station (RSTA) is disclosed, where the apparatus comprises processing circuitry configured to perform ranging with a initiating stations (ISTAs) and maintain a separate sounding dialogue token for each of the ISTAs and transmit a corresponding sounding dialogue token for a ISTA in a trigger frame for ranging and sounding or a null data packet announcement (NDPA) frame, and in a responding to initiating location measurement report. Apparatuses of RSTAs and ISTAS are disclosed that perform power control management during non-trigger-based ranging.
Abstract:
Logic to receive a first set of two or more timing management frames wherein one or more of the two or more timing management frames in the first set comprise a first adjusted follower clock value. Logic to calculate a second adjusted clock value. Logic to cause transmission of a second set of two or more timing management frames, wherein one or more of the two or more timing management frames in the second set comprise the second adjusted clock value. Logic to cause transmission of a first set of two or more acknowledgement frames. Logic to receive a second set of two or more acknowledgement frames. And logic to calculate a difference between the first adjusted follower clock value and the second adjusted clock value to determine a synchronization error, the synchronization error to represent a performance of the time synchronization.
Abstract:
Computer readable media, methods, and apparatuses for location estimation using multi-user multiple-input multiple-output in a wireless local-area network are disclosed. An apparatus is disclosed comprising processing circuitry configure to: encode a fine timing measurement (FTM) initiate (FTI) frame, the FTI frame comprising M0 message uplink resource allocations for a plurality of responders to transmit M0 messages to the HE STA. The processing circuitry further configured to configure the HE STA to transmit the FTI frame to the plurality of responders, and decode M0 messages from the plurality of responders in accordance with the M0 message uplink resource allocations, where the M0 messages are to be received at the HE STA at times T2 in accordance with multi-user multiple-input multiple-output (MU-MIMO). The processing circuitry further configured to acknowledge the M0 messages to be transmitted at a time T3, and decode M1 messages comprising a corresponding time T1 and time T4.