Abstract:
Embodiments of system, device, and method configurations for managing inter-radio access technology (inter-RAT) mobility of handovers between a UMTS Terrestrial Radio Access Network (UTRAN) or GSM EDGE Radio Access Network (GERAN) and an evolved UMTS Terrestrial Radio Access Network (E-UTRAN) to avoid scenarios of in-device coexistence (IDC) interference are disclosed herein. In one example, the existence and types of IDC interference with an E-UTRAN Long Term Evolution (LTE)/Long Term Evolution-Advanced (LTE-A) network are determined and communicated to the UTRAN/GERAN in an IDC indication signal. The IDC indication signal may communicate the existence and type of IDC interference occurring at user equipment, such as between licensed LTE/LTE-A and unlicensed industrial scientific medical (ISM) radio frequency bands. Accordingly, the UTRAN/GERAN may use information provided from the IDC indication signal to prevent a handover to the E-UTRAN that would result in IDC interference.
Abstract:
Generally, this disclosure provides apparatus and methods for improved User Equipment (UE) mobility in wireless heterogeneous networks. The UE device may include a location determination module configured to determine location information associated with the UE relative to one or more of a cells, wherein the of cells form part of a wireless heterogeneous network; a processing circuit configured to generate an assistance message, the assistance message including the location information associated with the UE; and a transmitter circuit configured to transmit a Radio Resource Control (RRC) message to an evolved Node B (eNB) associated with one of the cells, the RRC message including the assistance message.
Abstract:
Some demonstrative embodiments include devices, systems and/or cellular network communications corresponding to a non-cellular network. For example, an Evolved Node B (eNB) may be configured to transmit to a User Equipment (UE) at least one configuration message to configure one or more measurements to be performed by the UE with respect to at least Wireless-Local-Area-Network (WLAN), to receive from the UE at least one report message including measurement information corresponding to the WLAN, to trigger the UE to start or stop offloading to the WLAN, and/or to transmit to the UE network assistance information corresponding to the WLAN.
Abstract:
Some demonstrative embodiments include devices, systems and/or cellular network communications corresponding to a non-cellular network. For example, an Evolved Node B (eNB) may be configured to transmit to a User Equipment (UE) at least one configuration message to configure one or more measurements to be performed by the UE with respect to at least Wireless-Local-Area-Network (WLAN), to receive from the UE at least one report message including measurement information corresponding to the WLAN, to trigger the UE to start or stop offloading to the WLAN, and/or to transmit to the UE network assistance information corresponding to the WLAN.
Abstract:
Some demonstrative embodiments include devices, systems and/or cellular network communications corresponding to a non-cellular network. For example, an Evolved Node B (eNB) may be configured to transmit to a User Equipment (UE) at least one configuration message to configure one or more measurements to be performed by the UE with respect to at least Wireless-Local-Area-Network (WLAN), to receive from the UE at least one report message including measurement information corresponding to the WLAN, to trigger the UE to start or stop offloading to the WLAN, and/or to transmit to the UE network assistance information corresponding to the WLAN.
Abstract:
Technology for an eNodeB operable to maintain timing advance groups (TAGs) is disclosed. The eNodeB can form a timing advance group (TAG) for one or more serving cells. The eNodeB can map each of the one or more serving cells to the TAG using signaling from the eNodeB. The eNodeB can assign a timing advance group identifier (TAG ID) to the one or more serving cells mapped to the TAG.
Abstract:
A user equipment (UE) operable to authorize access to a node is disclosed. The UE can process extended access barring (EAB) configuration information in a system information block (SIB) received in a broadcast control channel (BCCH) from a node. The SIB can be a SIB type 14 in a long term evolution (LTE) system. The UE can bar access to the node when the SIB with EAB configuration information has characteristics associated with barring.
Abstract:
A system and method for authorizing access to a transmission station for a mobile device is disclosed. The mobile device can receive device extended access barring (EAB) configuration information in a broadcast control channel (BCCH) from a transmission station. The mobile device can bar the mobile device configured for EAB and having characteristics identified in the EAB configuration information for barring from accessing the transmission station. Alternatively, a system and method for barring a mobile device from accessing a transmission station is disclosed. The transmission station can receive from the mobile device a radio resource control (RRC) connection establishment request. The transmission station can configure a system information block (SIB) with extended access barring (EAB) configuration information. The transmission station can broadcast the SIB with EAB configuration information to the mobile device.
Abstract:
Embodiments of system, device, and method configurations for managing inter-radio access technology (inter-RAT) mobility of handovers between a UMTS Terrestrial Radio Access Network (UTRAN) or GSM EDGE Radio Access Network (GERAN) and an evolved UMTS Terrestrial Radio Access Network (E-UTRAN) to avoid scenarios of in-device coexistence (IDC) interference are disclosed herein. In one example, the existence and types of IDC interference with an E-UTRAN Long Term Evolution (LTE)/Long Term Evolution-Advanced (LTE-A) network are determined and communicated to the UTRAN/GERAN in an IDC indication signal. The IDC indication signal may communicate the existence and type of IDC interference occurring at user equipment, such as between licensed LTE/LTE-A and unlicensed industrial scientific medical (ISM) radio frequency bands. Accordingly, the UTRAN/GERAN may use information provided from the IDC indication signal to prevent a handover to the E-UTRAN that would result in IDC interference.
Abstract:
Embodiments of user equipment (UE) and base stations (eNodeB) and method for reducing power consumption in UE in a wireless network are generally described herein. In some embodiments, characteristics of UE including mobility, communication data load, and communication type are used by base stations, MME or other controlling entities to configure power saving features of the UE. Power saving features can include a new Radio Resource Control (RRC) layer state where circuitry is powered off for extended periods of time, extended Discontinuous Reception (DRX) cycles, reduced workloads in existing RRC, EPC Connection Management (ECM) and/or EPS Mobility Management (EMM) states or combinations thereof.