Abstract:
A process for the production of hydrogen cyanide comprises feeding a reaction mixture feed to a plurality of primary reactors each comprising a catalyst bed comprising platinum, wherein the reaction mixture feed comprises gaseous ammonia, methane, and oxygen gas, determining whether a percent yield of hydrogen cyanide in any of the plurality of primary reactors is at or below a threshold, identifying one or more suboptimal reactors amongst the plurality of primary reactors when the percent yield of hydrogen cyanide in any of the plurality of primary reactors is at or below the threshold, and supplementally feeding the reaction mixture feed to one or more supplementary reactors when the one or more suboptimal reactors are identified, wherein each of the one or more supplementary reactors comprises a catalyst bed comprising platinum. The supplemental feeding can be performed in place of the feeding of the reaction mixture feed to the one or more suboptimal reactors or in addition to the feeding of the reaction mixture feed to the one or more suboptimal reactors. The overall process is sufficient to maintain an overall measured hydrogen cyanide production rate amongst the one or more supplementary reactors and the primary reactors that is within a desired overall hydrogen cyanide production rate range.
Abstract:
A method and a system for recovering hydrogen from a process for making hydrogen cyanide are described herein. In the method, hydrogen is recovered from a gaseous waste stream of an Andrussow process. The method comprises the following steps: (a) adjusting a reaction mixture comprising methane, ammonia and oxygen to provide the reaction mixture with sufficient oxygen to generate a gaseous waste stream that has at least 40% hydrogen after removal of ammonia and recovery of hydrogen cyanide; and(b) removing components from the gaseous waste stream to generate recovered hydrogen.
Abstract:
An improved process for the hydrolysis of nylon polymer is herein disclosed using ionic liquids and optionally one equivalent of sulfuric acid per amide residue of the polymer. The process provides for a simplified means for separation of the hydrolyzed polyamide constituent monomers.