Abstract:
Methods, systems and devices related to bidirectional edge-based pulse width modulation communication systems are disclosed. In some implementations, upon receipt of a predetermined trigger pulse at least two slave devices perform an action.
Abstract:
Embodiments provide a circuit, a method, and a computer program configured to detect mechanical stress and a circuit, a method, and a computer program configured to monitor safety of a system. The detection circuit is configured to monitor a mechanical stress level of a semiconductor circuit. The detection circuit comprises a stress monitor module configured to monitor a signal comprising mechanical stress level information of the semiconductor circuit, a reference module to generate a reference signal, and a calibration module configured to modify at least one of the stress signal or the reference signal based on calibration information for the semiconductor circuit to obtain a at least one modified signal. The detection circuit further comprises an activation signal generator configured to generate an activation signal comprising activation information related to the mechanical stress level of the semiconductor circuit depending on a relation between the modified signal, and the stress signal or the reference signal.
Abstract:
Embodiments relate to a controller operable to transmit digital data messages to a receiver via a communication link having at least a first and a second transmission path, the controller comprising a first signal terminal the first transmission path and a second signal terminal for the second transmission path. The first signal terminal is operable to digitally transmit a first message to the receiver according to a first transmission technique and the second signal terminal is being operable to digitally transmit a second message to the receiver according to a second, different transmission technique.
Abstract:
A sensor device includes an output driver configured to: adjust a first time interval of the output signal between a first signal edge of a first type and a first signal edge of a second type based on a first reference value; adjust a second time interval of the output signal between the first signal edge of the second type and a second signal edge of the first type based on a second reference value; adjust a third time interval of the output signal between the second signal edge of the first type and a second signal edge of the second type based on a first data value; and adjust a fourth time interval of the output signal between the second signal edge of the second type and a third signal edge of the first type based on a second data value.
Abstract:
Fault detection devices, systems and methods are provided which implement identical processors. A first processor is configured to receive a first set of variables, execute a first firmware based on the first set of variables, and output a first result of the executed first firmware. A second processor, identical to the first processor, is configured to receive a second set of variables, execute a second firmware based on the second set of variables, and output a second result of the executed second firmware. The first firmware and the second firmware provide a same nominal function in a diverse manner for calculating the first result and the second result, respectively, such that the first result and the second result are expected to be within a predetermined margin. Thus, a fault can be detected by comparing the first and the second results.
Abstract:
A sensor device includes an output driver configured to: adjust a first time interval of the output signal between a first signal edge of a first type and a first signal edge of a second type based on a first reference value; adjust a second time interval of the output signal between the first signal edge of the second type and a second signal edge of the first type based on a second reference value; adjust a third time interval of the output signal between the second signal edge of the first type and a second signal edge of the second type based on a first data value; and adjust a fourth time interval of the output signal between the second signal edge of the second type and a third signal edge of the first type based on a second data value.
Abstract:
Fault detection devices, systems and methods are provided which implement identical processors. A first processor is configured to receive a first measurement, execute a first firmware based on the first measurement, and output a first result of the executed first firmware. A second processor, identical to the first processor, is configured to receive a second measurement, execute a second firmware based on the second measurement, and output a second result of the executed second firmware. The first firmware and the second firmware provide a same nominal function in a diverse manner for calculating the first result and the second result, respectively, such that the first result and the second result are expected to be within a predetermined margin. Thus, a fault can be detected by comparing the first and the second results.
Abstract:
Methods and devices are provided wherein feedback is included in a checksum. An example method includes communicating between a first device and a second device. The method further includes including feedback information used by the first device as input to a checksum calculation, wherein the feedback information is not communicated concurrently with the checksum from the first device to the second device.
Abstract:
Methods, systems and devices related to bidirectional edge-based pulse width modulation communication systems are disclosed. In some implementations, upon receipt of a predetermined trigger pulse at least two slave devices perform an action.
Abstract:
Embodiments relate to systems and methods for self-diagnostics and/or error detection using multiple signal paths in sensor and other systems. In an embodiment, a sensor system comprises at least two sensors, such as magnetic field sensors, and separate signal paths associated with each of the sensors. A first signal path can be coupled to a first sensor and a first digital signal processor (DSP), and a second signal path can be coupled to a second sensor and a second DSP. A signal from the first DSP can be compared with a signal from the second DSP, either on-chip or off, to detect faults, errors, or other information related to the operation of the sensor system. Embodiments of these systems and/or methods can be configured to meet or exceed relevant safety or other industry standards, such as safety integrity level (SIL) standards.